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Abstract
Fix an n × n nilpotent matrix B whose Jordan blocks are given

by the partition P of n. Assume the field k is closed. Consider the
irreducible variety NB parametrizing nilpotent n× n matrices A that
commute with B. What partition Q(P ) occurs for a generic A?

The ring k[A,B] is an Artinian ring. V. Baranovsky, R. Basili,
A. Premet and others explored the connection between fhe family
P (n) of pairs of commuting nilpotent matrices and the Hilbert scheme
parametriizing Artin algebra quotients of k[x, y]. P. Oblak and T Košir
showed that when A is generic, then k[A,B] is Gorenstein. However,
the Hilbert funciion of this ring determines Q(P ). A result of F.H.S.
Macaulay then shows that Q(P ) has parts that differ pairwise by at
least two. P. Oblak has determined the largest part of Q(P ). We re-
port on these results and others oonnecting the study of Artinian alge-
bras and commuting nilpotent matrices. In work joint with R. Basili
and L. Khatami, we give a criterion on A for k[A,B] to be Gorenstein.

Acknowledgment. Conversations with J. Weyman, P. Oblak, T. Košir,
D. King, G. McNinch, G. Todorov have been helpful.
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1 When do two matrices commute?

We consider the space Matn(C) of n× n matrices
B with complex entries (in C) and the vector space
V = Cn. So B is the matrix in the standard basis
of a map mB : V → V . When B has distinct
eigenvalues, then A commutes with B iff A,B are
“simultaneously diagonalizable”. We can see this in
a special case, as follows. Suppose that n = 3 and
B is diagonal:

B =




d 0 0
0 e 0
0 0 f



 .

It is easy to see that for A = (bij), 1 ≤ i, j ≤ 3

BA−AB =




0 (d− e)b12 (d− f)b13

(e− d)b21 0 (e− f)b23

(f − d)b31 (f − e)b32 0





So when d, e, f are distinct, A ∈ C(B), the cen-
tralizer of B, only if bij = 0 for i 6= j: when A is
diagonal.
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Another way to write this is:

Lemma. Let B have n-distinct eigenvalues. Then
A ∈ C(B) iff TFAE:

i. B,A are simultaneously diagonalizable.

ii. A is a polynomial in B.

Proof. (i.⇒ ii, case n = 3 ) Choose a basis so B =
Diag (d, e, f), and let A = Diag (a1, a2, a3) be di-
agonal, Then consider the following equation in un-
knowns α1, α2, α3

α1 + dα2 + d2α3 = a1

α1 + eα2 + e2α3 = a2

α1 + fα2 + f 2α3 = a3

whose coefficient matrix
1 d d2

1 e e2

1 f f 2

is Van der Monde, so nonsingular when d, e, f are
pairwise distinct. So

A = α1I+α2B+α3B
2 ∈ k[B], ring of polynomials in B.

§

Suppose on the other hand that B is a Jordan
n×n block; WOLOG assume B is nilpotent. Then
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we have (n = 4)

B =

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

B2 =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

B3 =

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

It is easy to see explicitly that A ∈ C(B) iff ∃α1, α2, α3, α4 ∈
C s.t.

A =

α1 α2 α3 α4

0 α1 α2 α3

0 0 α1 α2

0 0 0 α1

so
A = α1I + α2B + α3B

2 + α4B
4.

This leads to a generalization of the diagonalization
lemma:

Theorem 1.1. Suppose the Jordan form of B
has a single Jordan block for each eigenvalue.
Then A commutes with B iff A is a polynomial
in B.
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1.1 B Has Several Jordan blocks of EV = λ

Suppose B has several Jordan blocks with
the same eigenvalue λ. Let B = λI +
N,A = cI + N 0, N,N 0 nilpotent. Then
we have

AB −BA = N 0N −NN 0

So WOLOG we may assume λ = 0 in
studying the centralizer CB of B.
Set N = {M ∈ Matn(C) | Nn = 0}, and
NB = N ∩ CB.

Theorem 1.2.Let B be nilpotent. Then
NB is irreducible.

Question 1.3. Let B be a nilpotent Jor-
dan block matrix corresponding to the par-
tition P of n.

a. What is the set Q(P ) of Jordan block
partitions of elements of NB?

b. What is Q(P ) the Jordan block partition
for the generic element of NB?
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Asked independently by T. Košir - P. Oblak,
D. I. Panyushev, and R. Basili- I-.

1.2 Tool: Powers of A ∈ N , A regular.

Let A = Jk k × k Jordan block EV = 0.
⇒ rank As = max{k − s, 0}.
Lemma 1.4. Let A ∈ N | UAU−1 =
JQ,Q = (q1, . . . , qt) Jordan partition PA.
⇒ rank As−1−rank As = #{qi | s ≤ qi}
Cor. Corank A = # parts of QA.

Lemma 1.5. Let n = bk + r, 0 ≤ r < k.
Let A ∼ Jn, Then PAk has r parts b + 1,
and k − r parts b .

Proof. rk Ak = n−k implies PAk partitions

n and has k parts. Then (Ak)b+1 = 0 and

rk(Ak)b = rk(Jn)bk = rk(Jn)n−r = r,

imply PAk has r parts equal b + 1. Then

rk(Ak)b−1 = rk(Jn)bk−k = rk(Jn)n−r−k = r+k
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implies there are k − r parts b. §
We call such P almost rectangular (AR):

the parts differ pairwise by at most one.

Question. For which P is Q(P ) = (n)?

Lemma 1.6. Q(P ) = (n) ⇔ P is AR.

Proof.⇐: If P has r parts b + 1 and k− r
parts b, then B is similar to (Jn)k.
⇒: B is similar to a matrix B0 that com-

mutes with Jn; by Theorem 1.1 B0 = u(Jn)k

for some k and unit u, so P = PB = PB0 =
PJn

k. §

Ex. P = (3, 1) has Q(P ) = (3, 1). P 0 =
(3, 2, 2) has Q(P 0) = (7).

Note. For P = (4), Q(P ) = (4), but
(3, 1) /∈ Q(P ). Paradox: NB is closed, but
the set of orbits in NB is not “Q(P )”.

Def. Set rP = minimum number of AR
subpartitions needed to write P ,

P = P1 ∪ · · · ∪ Pr.
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Ex.P = (5, 4, 3), rP = 2; P = (7, 6, 5, 3, 3), rP =
3.

Theorem 1.7. (R. Basili). The number
of parts of Q(P ) is rP .

Def. Given P 0 AR, P 0 ⊂ P , let

s(P, P 0) = #{parts of P > than any part of P 0}.
For P 0 ⊂ P AR, the Oblak path length is

Ob(P, P 0) = |P 0| + 2s(P, P 0). (1.1)

Theorem 1.8. (P. Oblak) The index of
Q(P ) (largest part) is maxP 0⊂POb(P, P 0).

To explain this we need the poset DP .
Let SP be the set of integers occuring as
parts of P , and write P = {ini, i ∈ SP}
(so P has ni parts = i). The vertices of
DP correspond to the points of the Ferrer’s
graph of P , labelled

(i, u, k), i ∈ SP , 1 ≤ u ≤ i, 1 ≤ k ≤ ni.
Let ν(i, u, k) = u− (i + 1)/2. We visualize
(i, u, k) ofDP at (x, y, z) = (ν(i, u, k), i, k).
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(3,1,1)
w−→ (3,2,1)

w−→ (3,3,1)

β3,1

y
xα1,3

(1,1,2)

id

x
(1, 1, 1)

Poset DP and maps for P = (3, 1, 1)

1.3 Maximal nilpotent subalgebra UB ⊂ NB.

Recall there is a canonical quotient

π : CB →MB,

with kernel Jacobson radical JB, and im-
age MB semisimple. We choose a maximal
nilpotent subalgebra TB ⊂MB:
TB = {Π of strictly upper triang. matrices},
and set UB = π−1(TB).

Lemma 1.9. Let A ∈ NB. Then
∃C ∈ CB | CAC−1 ∈ UB.
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Let Vi,k
∼= k[B]/Bi, with basis

{vi,u,k = Bu−1vi,1,k, 1 ≤ u ≤ i}, for
i ∈ SP , 1 ≤ k ≤ ni. Let V = ⊕Vi,k
and let ei,k ∈ End(V ) be the idempotent
in End(V ) corresponding to Vi,k. Let E =
h{ei,k}i. Let EB = E ⊕ UB ⊂ CB.

For i > i0 let βi,i0 be the canonical B-
module surjection Vi,k → Vi0,k” satisfying

βi,i0(vi,1,k) = vi0,1,k.
Let αi0,i be the canonical B-module inclu-
sion satisfying

αi0,i(vi0,1,k) = vi,1+i−i0,k.

Def. i is isolated if both i+1, i− 1 /∈ SP .
For i ∈ SP set i− the next smaller, and i+

the next larger element of SP if they exist.

Ex. SP = (4, 2, 1), 4 is isolated, 4− = 2.

Let DP be the quiver associated to EB; it
has one point for each part of P . The edges
of DP are given by the following theorem,
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which also determines the edges of the poset
DP , which has n points {(i, u, k)}.
Theorem 1.10. hei,k UB/UB2 ei0,k0i is
one or zero-dimensional. When non-zero
it has as basis the class in UB/UB2 of the
following homomorphism in UB:

i. When i0 = i−, the homomorphism
βi,i0 from Vi,1 → Vi0,ni0

.

ii. When i0 = i+ the homomorphism αi,i0
from Vi,1 → Vi0,ni0

.

iii. When i0 = i, and ni > 1, the identity
homomorphism from Vi,k → Vi,k+1, k =
1, . . . ni − 1.

iv. When i0 = i, and i is isolated, the
homomorphism Ji (Jordan nilpotent
block) from Vi,ni

→ Vi,1.

Tbe representation MDP of the quiver
DP is given by the {Vi,k}, and the above
maps together with the idempotents {ei,k}.

11



The above maps on {vi,u,k} determine the
edges of the poset DP and EB = KDP/I.
That is, the maps from two paths from (i, u, k)
to (i0, u0, k0) are the same; and all compo-
sitions that go out of the poset are zero.
Adjoining veriables xp to k for each path in
DP a generic A ∈ UB over k(x), will be

A =
P

p xpcp
where cp is the corresponding product of
maps β0s, α0s, ei,u,k from MDP .

Lemma 1.11. The index of Q(P ) is the
length of the longest path in the poset
DP .

Let p1 denote the largest part of P . We
denote by v0 the source vertex or vector
v0 = (pt, 0, 1) ofDP , and by τ (v0) = (pt, pt, npt)
the sink vertex.
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Lemma 1.12. i. There is an involution
τ on DP that extends to EP :

τ (i, u, k) = (i + 1− u, u, ni + 1− k),

τ (βi,i0) = αi0,i,

ii. The statistic ν(i, u, k) = u−(i+1)/2.
is nondecreasing on chains of DP .

iii. Every path from v0 to τ (v0) in DP
may be replaced by a τ -symmetric path
from v0 to τ (v0) that is at least as
long.

1.4 Maximal chains in DP

Def.. An Oblak path of DP is a saturated,
symmetric chain comprised of

a. Saturated path through AR P 0 ⊂ P .

b. Two “tails” T and ι(T ). T is through all
initial vertices (i, 1, k) above P 0. ι(T ) is
the path back through all terminal ver-
tices (i, i, k) above P”.
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The following result was first shown by P.
Oblak.

Theorem 1.13.There is an Oblak chain
between v0 and τ (v0) in DP that has max-
imum length among all chains from v0 to
τ (v0).

Proof. We give a new proof using Lemma 1.12,
and an induction. §

This proves Oblak’s theorem about the
index of Q(P ).

1.5 When is the ring k[A,B] Gorenstein?

We say that P is stable if Q(P ) = P .

Lemma 1.14. (R. Basili, A.I) P is sta-
ble iff its parts differ pairwise by at least
two.

We denote by H(A) the Hilbert function
of an algebra A. We denote by P (H) the
partition dual to (1, H(1), H(2), .....,H(n)).
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Example 1.15.For H = (1, 2, 3, 3, 2, 2, 1),
P (H) = (7, 5, 2). For H = (1, 2, 3, 2, 1),
P (H) = (5, 3, 1). For H = (1, 2, 3, 1), P (H) =
(4, 2, 1) (is not stable).

Theorem 1.16. (R. Basili, AI). (char k =
0 or char k > n). Let dim k[A,B] = n.
Then for an open dense set of λ ∈ k,
A+λB has Jordan block partition P (H),
H = H(k[A,B]).

Theorem 1.17. (P. Oblak, T. Košir).
For A generic, k[A,B] is Gorenstein.

Corollary 1.18. Q(P ) is stable.

This follows from Theorems 1.16,1.17, and

Theorem 1.19. (F.H.S. Macaulay). Let
A be a CI Artinian quotient of k{x, y},
local ring. Then

H(A) = (1, 2, 3, . . . , d, td, . . . , tj) where
∀i | ti − ti+1 |≤ 1.

•P (H) has parts differing by at least two!

15



Note. Let i ∈ SP . The i-th semisimple
part of C ∈ CB is the restriction of C to the
span hvi,1,1, . . . vi,1,ni

i. Thus A ∈ UB ≡ A
is upper triangular on each span. Equiva-
lently, A has no downward components on
the span.

We now give a simple criterion.

Theorem 1.20. Assume that A ∈ UB
has nonzero components on each βi,j, αi,j
and each map ti,u : vi,1,u → vi,1,u+1.
Then k[A,B] has v0 as cyclic vector, and
hτ (v0)i as socle, so is Gorenstein.

Proof. (0 : B) is just the right side of DB
({vi,i,k}). On the right side A, having only
nonzero components on α0s and on τ (ti,u)
satisfies

(0 : A) ∩ (0 : B) = τ (v0). §
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1.6 Connection with Hilbert scheme

The natural connection between commut-
ing n × n nilpotent matrices and the fibre
of the punctual Hilbert scheme Hilbn(A2)
over a point p of A2 was noted by H. Naka-
jima; and used by V. Baranovsky, R. Basili,
and A. Premet, to study the irreducibility
of the variety of pairs of commuting nilpo-
tent matrices, using J. Briançon’s work, or
vice versa. Since a pair of commuting ma-
trices may not have a cyclic vector, the the-
ory of pairs and triples of commuting nilpo-
tent matrices is related to that of Hilbert
schemes, but is not “isomorphic”.
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