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Abstract

Fix an n X n nilpotent matrix B whose Jordan blocks are given
by the partition P of n. Assume the field k is closed. Consider the
irreducible variety Np parametrizing nilpotent n X n matrices A that
commute with B. What partition Q(P) occurs for a generic A7

The ring k[A, B] is an Artinian ring. V. Baranovsky, R. Basili,
A. Premet and others explored the connection between fhe family
P(n) of pairs of commuting nilpotent matrices and the Hilbert scheme
parametriizing Artin algebra quotients of k[z, y]. P. Oblak and T Kogir
showed that when A is generic, then k[A, B] is Gorenstein. However,
the Hilbert funciion of this ring determines Q(P). A result of F.H.S.
Macaulay then shows that QQ(P) has parts that differ pairwise by at
least two. P. Oblak has determined the largest part of Q(P). We re-
port on these results and others oonnecting the study of Artinian alge-
bras and commuting nilpotent matrices. In work joint with R. Basili
and L. Khatami, we give a criterion on A for k[A, B] to be Gorenstein.

Acknowledgment. Conversations with J. Weyman, P. Oblak, T. Kosir,
D. King, G. McNinch, G. Todorov have been helpful.



1 When do two matrices commute?

We consider the space Mat,(C) of n x n matrices
B with complex entries (in C) and the vector space
V = C". So B is the matrix in the standard basis
of a map mp : V — V. When B has distinct
eigenvalues, then A commutes with B iff A, B are
“simultaneously diagonalizable”. We can see this in
a special case, as follows. Suppose that n = 3 and
B is diagonal:
00
B = e 0

o O

0 f
[t is easy to see that for A = (b;;),1 <14,5 <3
0 (d — 6)b12 <Cl — f)blg
BA—AB = (6 — d)bgl 0 (6 — f)bgg
(f — d)bgl (f — €>b32 0
So when d, e, f are distinct, A € C(B), the cen-

tralizer of B, only if b;; = 0 for ¢ # j: when A is
diagonal.



Another way to write this is:

Lemma. Let B have n-distinct eigenvalues. Then

A € C(B) iff TFAE:
i. B, A are simultaneously diagonalizable.
ii. A is a polynomial in B.
Proof. (.= ii, case n = 3 ) Choose a basis so B =
Diag (d, e, f), and let A = Diag (a1, as, ag) be di-
agonal, Then consider the following equation in un-
knowns aq, oo, a3
oy + dos + d?as = ay
a1 + eay + 62043 = a9
a1+ faos + fQCvg = as
whose coefficient matrix

1 d d?

1 e €2
1 f f?

is Van der Monde, so nonsingular when d, e, f are
pairwise distinct. So

A = a1I+ayB+a3B* € k[B], ring of polynomials in B.
[]

Suppose on the other hand that B is a Jordan
n X n block; WOLOG assume B is nilpotent. Then
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we have (n = 4)
0100 0010 0001
0010 ., 0001 4 0000
B_OOOl B_OOOOB_OOOO
0000 0000 0000
[t is easy to see explicitly that A € C(B) iff oy, ag, az, ay €
C s.t.
Qp p Q3 Oy
o 0 1 o (O3
A= 0 O 1 9
0 0 0 o
SO

A =aql + ayB + a3B* + auB*.

This leads to a generalization of the diagonalization
lemma:

Theorem 1.1. Suppose the Jordan form of B
has a single Jordan block for each eigenvalue.

Then A commutes with B iff A is a polynomaial
i B.



11 B Has Several Jordan blocks of EV = )\

Suppose B has several Jordan blocks with
the same eigenvalue A\. Let B = Al +
N,A = ¢l + N',N, N’ nilpotent. Then
we have

AB—BA=N'N- NN’

S0 WOLOG we may assume A = 0 in
studying the centralizer Cp of B.
Set N ={M € Mat,(C)| N" =0}, and
Ng=NnNnCg.
Theorem 1.2. Let B be nilpotent. Then
Np is irreducible.

Question 1.3. Let B be a nilpotent Jor-
dan block matrix corresponding to the par-
tition P of n.

a. What is the set Q(P) of Jordan block
partitions of elements of Ng?

b. What is Q(P) the Jordan block partition
for the generic element of Ng?
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Asked independently by T. Kosir - P. Oblak,
D. I. Panyushev, and R. Basili- I-.

12 Tool: Powers of A € N/, A regular.

Let A = J,. k x k Jordan block EV = 0.
= rank A° = max{k — s,0}.

Lemma 1.4.Let A € N | UAU! =
Jo,Q = (@1, ..., q) Jordan partition Py.

= rank A5~ —rank A = #{q¢; | s < ¢;}
Cor. Corank A = # parts of () 4.

Lemma 1.5. Let n =bk + 1,0 <r < k.
Let A ~ Jp, Then P4 has r parts b+1,
and k —r parts b .

Proof. rk AF = n—k implies P, partitions
n and has k parts. Then (A%)?*1 = 0 and

k(AR = 7k (Jn)% = rk(J)" " =,
imply P, has r parts equal b+ 1. Then
k(AR = rk( )RR = k()" = r ok
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implies there are k — r parts b. []

We call such P almost rectangular (AR):
the parts differ pairwise by at most one.

Question. For which P is Q(P) = (n)?
Lemma 1.6.Q(P) = (n) < P is AR.

Proof. <: If P hasr partsb+ 1 and k —1r
parts b, then B is similar to (J,)*,

= B is similar to a matrix B’ that com-
mutes with Jy,; by Theorem 1.1 B' = u(J,)*

for some k and unit u, so P = Pg = Py =
P . []

In

Ex. P = (3,1) has Q(P) = (3,1). P/ =
(3,2,2) has Q(P') = (7).
Note. For P = (4),Q(P) = (4), but
(3,1) ¢ Q(P). Paradox: Np is closed, but

the set of orbits in Mg is not “Q(P)”.

Def. Set rp = minimum number of AR

subpartitions needed to write P,




Ex. P = (5,4,3),rp=2;P = (7,6,5,3,3),rp =
3.

Theorem 1.7. (R. Basili). The number
of parts of Q(P) is rp.
Def. Given P’ AR, P/ C P, let

s(P, P") = #{parts of P > than any part of P'}.
For P' ¢ P AR, the Oblak path length is
Ob(P, Py =|P'| +2s(P, P)). (1.1)

Theorem 1.8. (P. Oblak) The index of
Q(P) (largest part) is maxpi~ pOb(P, P’).

To explain this we need the poset Dp.
Let Sp be the set of integers occuring as
parts of P, and write P = {i"i,i € Sp}
(so P has n; parts = i). The vertices of
D p correspond to the points of the Ferrer’s
oraph of P, labelled

(2,u,k),1 € Sp,1 <u<i,1<k<n,
Let v(i,u, k) = u— (i +1)/2. We visualize
(2,u,k)of Dpat (z,y, 2) = (v(i,u, k), 2, k).
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(3,1,1) — (3.2,1) — (3,3,1)

53,% TO‘LS
(1,1,2)
d]
(1,1,1)

Poset Dp and maps for P = (3,1, 1)

1.3 Maximal nilpotent subalgebra Uy C N3.

Recall there is a canonical quotient
m:Cp — Mp,

with kernel Jacobson radical Jg, and im-
age M p semisimple. We choose a maximal
nilpotent subalgebra 7p C M p:

Tp = {1l of strictly upper triang. matrices},

and set Up = 7~ 1(Tp).

Lemma 1.9. Let A € Ng. Then
3C e Cp | CAC! e Up.
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Let Vi = [B]/ B, with basis
{Viuk = Bu_lvi,l,ka 1 < u < 4}, for
i € Sp,1 < k < n; LetV =
and let e; ;. € End(V') be the 1dempotent
in End(V') corresponding to V; ;.. Let E =
<{6zk}> Let Ep=EOUp CCp.
For i > 4’ let B, be the canonical B-
module surjection V) L — V%/’ 1 satistying
Biir(vi1 k) = vy 1 k-
Let ay ; be the canonical B-module inclu-
sion satlsfymg
vt (V1 k) = Vi 1qimil k-
Def. i is isolated if both i+1,1—1¢ Sp.
For i € Sp set i~ the next smaller, and ¢+
the next larger element of Sp if they exist.

Ex.Sp = (4,2,1), 4 is isolated, 4~ = 2.

Let © p be the quiver associated to £p; it
has one point for each part of P. The edges
of ® p are given by the following theorem,
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which also determines the edges of the poset
Dp, which has n points {(z,u, k)}.

Theorem 1.10. (e; U /UR* ey 1) is
one or zero-dimensional. When non-zero

it has as basis the class in Ug /UR° of the
following homomorphism in Up:

i. When i/ = i~, the homomorphism
ﬁm’/ fmm ‘/;71 — V%/,nz_/.

. When ' =1 the homomorphism Q1
from Vi,l — V%/,ni/.

5. When i’ =14, and n; > 1, the identity
homomorphism from V; . — V; p 1,k =
1, N 7 L.

w. When i/ = 4, and i is isolated, the
homomorphism J; (Jordan nilpotent
block) from V; . — V; 1.

The representation M@ p of the quiver

D p is given by the {V; 1.}, and the above
maps together with the idempotents {e; . }.
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The above maps on {v; , 1} determine the
edges of the poset Dp and Eg = KDp/1.
That is, the maps from two paths from (¢, u, k)
to (¢/,u’, k') are the same; and all compo-
sitions that go out of the poset are zero.
Adjoining veriables x) to k for each path in
Dp a generic A € Up over k(x), will be
A=), rpep
where ¢, Is the corresponding product of
maps A's, as, €y J irom MDp.

Lemma 1.11. The index of Q(P) is the
length of the longest path in the poset
Dp.

Let py; denote the largest part of P. We
denote by vy the source vertex or vector

vy = (pt, 0, 1) of Dp, and by 7(vg) = (pt, pt, npy)
the sink vertex.
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Lemma 1.12. 1. There is an involution
7 on Dp that extends to Ep:

(i, u, k) =(G+1—u,un; +1—k),
T(6 ) = ay 4,

ii. The statistic v(i,u, k) =u—(i+1)/2.
s nondecreasing on chains of Dp.
1. Fvery path from vy to T(vg) in Dp

may be replaced by a T-symmetric path

from vy to T(vg) that is at least as
long.

1.4 Maximal chains in Dp

Def.. An Oblak path of Dp is a saturated,

symmetric chain comprised of

a. Saturated path through AR P’ C P.

b. Two “tails” T and «(T"). T is through all
initial vertices (4,1, k) above P’. «(T) is
the path back through all terminal ver-
tices (¢, %, k) above P”.
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The following result was first shown by P.
Oblak.

Theorem 1.13. There s an Oblak chain
between vy and T(vg) in Dp that has maz-
imum length among all chains from vy to
7(vo).

Proof. We give a new proof using Lemma 1.12
and an induction. []

This proves Oblak’s theorem about the
index of Q(P).

)

1.5 When is the ring kA, B] Gorenstein?

We say that P is stable if Q(P) = P.

Lemma 1.14. (R. Basili, A.I) P is sta-
ble iff its parts differ pairwise by at least
two.

We denote by H(.A) the Hilbert function
of an algebra A. We denote by P(H) the
partition dual to (1, H(1), H(2), ....., H(n)).
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Example 1.15.For H = (1,2,3,3,2,2, 1),
P(H) = (7,5,2). For H = (1,2,3,2,1),
P(H)=(5,3,1). For H =(1,2,3,1), P(H) =
(4,2, 1) (is not stable).

Theorem 1.16. (R. Basili, AI). (char k =

0 or char k > n). Let dimk|A, B] = n.

Then for an open dense set of A € k,
A+AB has Jordan block partition P(H),

H = H(k[A, B)).

Theorem 1.17. (P. Oblak, T. Kosir).
For A generic, k|A, B] is Gorenstein.
Corollary 1.18. Q(P) is stable.

This follows from Theorems 1.16,1.17, and

Theorem 1.19. (F.H.S. Macaulay). Let
A be a CI Artinian quotient of k{x,y},
local ring. Then
H(A) =(1,2,3,...,d,tq,...,t;) where
Vi [t =t |[< 1

e P(H) has parts differing by at least two!
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Note. Let © € Sp. The ¢-th semisimple
part of C' € Cp is the restriction of C' to the
span (v; 1.1, .-V 1n,;). Thus A €elUp=A
is upper triangular on each span. Equiva-
lently, A has no downward components on
the span.

We now give a simple criterion.

Theorem 1.20. Assume that A € Up
has nonzero components on each (3; j, a ;
and each map t;, © Vily — Vjilytl-
Then k|A, B] has vy as cyclic vector, and
(T(vg)) as socle, so is Gorenstein.

Proof. (0 : B) is just the right side of Dp
(1v;.4.k})- On the right side A, having only
nonzero components on &'s and on 7(t; ,,)

satisfies
(0: A)N(0: B) = 7(vp). []
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1.6 Connection with Hilbert scheme

The natural connection between commut-
ing n X n nilpotent matrices and the fibre
of the punctual Hilbert scheme Hilb™(A?)
over a point p of A? was noted by H. Naka-
jima; and used by V. Baranovsky, R. Basili,
and A. Premet, to study the irreducibility
of the variety of pairs of commuting nilpo-
tent matrices, using J. Briancon’s work, or
vice versa. Since a pair of commuting ma-
trices may not have a cyclic vector, the the-
ory of pairs and triples of commuting nilpo-
tent matrices is related to that of Hilbert
schemes, but is not “isomorphic”.
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