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Deformation problem

We fix a field k.

Our example:

• A = k[x , y ] is the commutative coordinate ring of the affine plane

• M = A/(x2, y) is considered as a right A-module

We want to compute:

1 The pro-representing hull Hc(M) of the commutative deformation
functor DefcM of the right A-module M

2 The pro-representing hull H(M) of the noncommutative deformation
functor DefM of the right A-module M

3 The commutative versal family Mc defined over Hc(M)

4 The noncommutative versal family M defined over H(M)
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The tangent space and obstruction space

We fix a free resolution (L•, d•) of the right A-module M:

0← M ← A
( x2 y )·←−−−− A2

( y
−x2

)
·

←−−−−− A← 0

To compute ExtnA(M,M), we consider the complex HomA(L•,M):

M
·( x2 y )−−−−→ M2

·
( y
−x2

)
−−−−−→ M → 0

The maps in this complex are zero, and the tangent space H1 and the
obstruction space H2 for either of the deformation functors are given by

H1 = Ext1A(M,M) = M2, H2 = Ext2A(M,M) = M

where dimk H
1 = 4 and dimk H

2 = 2 since M ' k ⊕ kx has dimension two.
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The pro-representing hulls

From the dimensions of the tangent space and obstruction space, we may
conclude that the hulls have the following form:

Pro-representing hulls

There are commutative power series f c1 , f
c
2 and noncommutative power

series f1, f2 such that

Hc(M) = k[[t1, t2, t3, t4]]/(f c1 , f
c
2 )

H(M) = k〈〈t1, t2, t3, t4〉〉/(f1, f2)

We must use commutative and noncommutative Massey products to
compute these power series, and the versal families will be discovered as a
side product of these computations.
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The Yoneda DGA

We know that Hn(Y •) ' ExtnA(M,M), where Y • = Hom
(•)
A (L•, L•) is the

Yoneda DGA (differential graded algebra). The Yoneda DGA is given by

Y n = Hom
(n)
A (L•, L•) =

∐
i≥0

HomA(Ln+i , Li )

for n ≥ 0, and for any element φ = (φi )i≥0 ∈ Y n with φi : Li+n → Li , the
differential dn : Y n → Y n+1 is given by

dn(φ) = ψ = (ψi )i≥0, with ψi = φidn+i + (−1)n+1diφi+1

Representations of cohomology classes when Li = 0 for i > 2

An element in H1 = H1(Y •) can be represented by a pair (φ0, φ1) ∈ Y 1

such that d0φ1 + φ0d1 = 0. An element in H2 = H2(Y •) can be
represented by an element ω0 ∈ Y 2. The multiplication Y 1 ⊗k Y

1 → Y 2

is given by
(φ0, φ1) · (ψ0, ψ1) = φ0 ◦ ψ1
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Yoneda representations of tangent vectors

Let us choose a k-base of the tangent space H1 = Ext1A(M,M) = M2

consisting of

t∗1 = (1, 0), t∗2 = (x , 0), t∗3 = (0, 1), t∗4 = (0, x)

and a cocycle α(i) =
(
α(i)0 α(i)1

)
∈ Y 1 that lifts the cohomology class

t∗i ∈ H1(Y •) for i = 1, 2, 3, 4:

Yoneda representatives of tangent vectors

α(1) = {
(
1 0

)
,

(
0
−1

)
} α(3) = {

(
0 1

)
,

(
1
0

)
}

α(2) = {
(
x 0

)
,

(
0
−x

)
} α(4) = {

(
0 x

)
,

(
x
0

)
}
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Yoneda representations of obstruction vectors

Let us choose a k-base of the obstruction space H2 = Ext2A(M,M) = M
consisting of

s∗1 = (1), s∗2 = (x)

and a cocyle ω(i) =
(
ω(i)0

)
∈ Y 2 that lifts the cohomology class

s∗i ∈ H2(Y •) for i = 1, 2:

Yoneda representatives of obstruction vectors

ω(1) = {
(
1
)
} ω(2) = {

(
x
)
}
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Versal family at the tangent level

At the tangent level, Hc
2 = Hc/I (Hc)2 and H2 = H/I (H)2 both equal

k[ε] = k[ε1, . . . , ε4], where εi = ti and εiεj = 0 for all i , j .

Lifting of families

We write A[ε] = k[ε1, . . . , ε4]⊗k A = H2 ⊗k A = Hc
2 ⊗k A, and define

liftings of the A-linear differentials d0 and d1 to A[ε] by

d0[ε] = d0 +
∑

1≤m≤4
εm α(m)0 =

(
x2 + ε1 + ε2x y + ε3 + ε4x

)
d1[ε] = d1 +

∑
1≤m≤4

εm α(m)1 =

(
y + ε3 + ε4x
−x2 − ε1 − ε2x

)
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Versal family at the tangent level

We consider the following sequence of maps, where M[ε] = coker(d0[ε]):

0← M[ε]← A[ε]
d0[ε]←−− A[ε]2

d1[ε]←−− A[ε]← 0 (1)

By construction, this is a complex. In fact, it is instructional to compute
the matrix product

d0[ε]d1[ε] = (ε1ε3 − ε3ε1) + (ε1ε4 − ε4ε1 + ε2ε3 − ε3ε2)x + (ε2ε4 − ε4ε2)x2

It is zero since εiεj = 0 in k[ε].

Conclusion: Versal families at the tangent level

• The complex (1) is a free resolution of M[ε] that lifts (L•, d•) to A[ε]

• The versal families at the tangent level are M2 =Mc
2 = M[ε]
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Cup products

The Massey products 〈α(i), α(j)〉 of order two are called cup products.

Definition of cup products

The commutative and noncommutative cup products are defined in terms
of the multiplication in the Yoneda DGA:

〈α(i), α(j)〉c = α(i)α(j) + α(j)α(i)

〈α(i), α(j)〉 = α(i)α(j)

The cup products give second order approximations fi = f 2i + I (H)3 and
f ci = (f ci )2 + I (Hc)3 of the power series, where

f 2i =
∑

1≤m,n≤4
ω(i)∗(〈α(m), α(n)〉) tmtn

(f ci )2 =
∑

1≤m≤n≤4
ω(i)∗(〈α(m), α(n)〉c) tmtn
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Computation of cup products

We compute the noncommutative cup products that are non-zero in Y 2:

〈α(1), α(3)〉 = (1) = ω(1) 〈α(3), α(1)〉 = (−1) = −ω(1)

〈α(1), α(4)〉 = (x) = ω(2) 〈α(4), α(1)〉 = (−x) = −ω(2)

〈α(2), α(3)〉 = (x) = ω(2) 〈α(3), α(2)〉 = (−x) = −ω(2)

〈α(2), α(4)〉 = (x2) 〈α(4), α(2)〉 = (−x2)

We notice that all commutative cup products are zero in Y 2.

Second order approximations

f 21 = t1t3 − t3t1 (f c1 )2 = 0

f 22 = t1t4 − t4t1 + t2t3 − t3t2 (f c2 )2 = 0
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Cup products and lifting of complexes

Let us try to lift the complex (1) from the tangent level to k[[t1, . . . , t4]]
or k〈〈t1, t2, t3, t4〉〉 by replacing di [ε] with d1

i (t):

d1
0 (t) = d0 +

∑
1≤m≤4

tm α(m)0 =
(
x2 + t1 + t2x y + t3 + t4x

)
d1
1 (t) = d1 +

∑
1≤m≤4

tm α(m)1 =

(
y + t3 + t4x
−x2 − t1 − t2x

)
The obstruction for this to be a lifting of complexes is

d1
0 (t)d1

1 (t) = (t1t3 − t3t1) + (t1t4 − t4t1 + t2t3 − t3t2)x + (t2t4 − t4t2)x2

Note that the coefficients in front of 1 = ω(1) and x = ω(2) are the second
order approximations, and that the obstruction vanishes in k[[t1, . . . , t4]].
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The commutative case

In the commutative situation, we have d1
0 (t)d1

1 (t) = 0. We may consider
di (t) = d1

i (t) as a matrix with coefficients in A[[t]] = k[[t1, . . . , t4]]⊗̂kA.
Moreover, we consider the complex

0← M(t)← A[[t]]
d0(t)←−−− A[[t]]2

d1(t)←−−− A[[t]]← 0 (2)

where M(t) = coker(d0(t)).

Commutative versal family

• The complex (2) is a free resolution of M(t) that lifts (1) to A[[t]]

• The pro-representing hull of the commutative deformation functor
DefcM is H(M)c = k[[t1, . . . , t4]], and f c1 = f c2 = 0

• The versal family in the commutative situation is Mc = M(t)
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The noncommutative case

In the noncommutative situation, the obstruction for lifting the complex
(1) to T 1 = k〈〈t1, t2, t3, t4〉〉 does not vanish, since

d1
0 (t)d1

1 (t) = (t1t3 − t3t1) + (t1t4 − t4t1 + t2t3 − t3t2)x + (t2t4 − t4t2)x2

= f 21 · ω(1) + f 22 · ω(2) + (t2t4 − t4t2)x2

where
(
x2
)

is a coboundary in Y 2. It follows that at the next level, where
I (H)3 = 0, we must kill the obstructions by forcing f 21 = f 22 = 0:

H3 = T 1/(I (T 1)3 + (f 21 , f
2
2 ))

= k〈t1, t2, t3, t4〉/((t1, t2, t3, t4)3, [t1, t3], [t1, t4] + [t2, t3])

where we write [ti , tj ] = ti tj − tj ti for all i , j .
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Idea: Immediately defined third order Massey products

A third order Massey product 〈α(i), α(j), α(k)〉 is immediately defined if
the intermediary cup products are coboundaries:

〈α(i), α(j)〉 = d(α(i , j))

〈α(j), α(k)〉 = d(α(j , k))

In that case, {α(i), α(j), α(k), α(i , j), α(j , k)} is a defining system for the
third order Massey product. Given a defining system, the third order
Massey product is defined by

〈α(i), α(j), α(k)〉 = α(i)α(j , k) + α(i , j)α(k)

Even if the third order Massey product is defined, it may depend on the
defining system.
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Defining systems for third order Massey products

Let B1 be the set of monomials in the variables t1, . . . , t4 of order at most
one, and extend this to a monomial k-base B2 = B1 ∪ B2 for H3, with

B2 = {ti tj : 1 ≤ i , j ≤ 4} \ {t1t3, t1t4}

We use the quadratic relations t1t3 = t3t1 and t1t4 = t4t1 − t2t3 + t3t2 to
express any quadratic monomial t = ti tj as

t =
∑
t′∈B2

β(t, t ′) t ′

with β(t, t ′) ∈ k . For any tmtn ∈ B2, there exists a (non-unique) element
α(m, n) ∈ Y 1 such that∑

1≤i ,j≤4
〈α(i), α(j)〉β(ti tj , tmtn) = −d(α(m, n))
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Computing defining systems

For t = tmtn ∈ B2, we compute the right-hand side of the equation

d(α(m, n)) = −
∑

1≤i ,j≤4
〈α(i), α(j)〉β(ti tj , tmtn)

Using the cup-products computed earlier, we see that the right-hand side
vanishes in all cases except these:

d(α(2, 4)) = −〈α(2), α(4)〉 = (−x2)

d(α(4, 2)) = −〈α(4), α(2)〉 = (x2)

We choose α(m, n) = 0 for all tmtn ∈ B2 with (m, n) 6= (2, 4), (4, 2), and

α(2, 4) = {
(
0 1

)
,

(
0
0

)
}, α(4, 2) = {

(
0 −1

)
,

(
0
0

)
}

Then D(3) = {α(m, n) : tmtn ∈ B2} ∪ {α(m) : tm ∈ B1} is a defining
system for third order Massey products.
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Third order Massey products

The third order Massey product 〈α(p), α(q), α(r)〉 is defined for any
monomial t = tptqtr in B ′3, where

B ′3 = {ti tj tk : 1 ≤ i , j , k ≤ 4} \ {ti t1t3, ti t1t4, t1t3ti , t1t4ti : 1 ≤ i ≤ 4}

Let B ′3 = B ′3 ∪ B2. For any monomial t of degree at most three, we have

t =
∑
t′∈B′

3

β′(t, t ′)t ′ +
∑

1≤i≤2
β′(t, i)f 2i

with β(t, t ′), β′(t, i) ∈ k. The third order Massey products are given by

〈α(p), α(q), α(r)〉 =
∑

t=t′t′′

t′,t′′∈B2

α(t ′)α(t ′′)β′(t, tptqtr )
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Computing third order Massey products

In the Yoneda DGA, the only non-zero products α(t, t ′) with t, t ′ ∈ B2 are

α(2, 4)α(1) = (−1) = −ω(1) α(4, 2)α(1) = (1) = ω(1)

α(2, 4)α(2) = (−x) = −ω(2) α(4, 2)α(2) = (x) = ω(2)

Since the monomials t2t4t1, t2t4t2, t4t2t1, t4t2t2 are not involved in any of
the relations, the only non-zero third order Massey products are

〈α(2), α(4), α(1)〉 = −ω(1) 〈α(4), α(2), α(1)〉 = ω(1)

〈α(2), α(4), α(2)〉 = −ω(2) 〈α(4), α(2), α(2)〉 = ω(2)

Third order approximations

f 31 = [t1, t3]− [t2, t4]t1

f 32 = [t1, t4] + [t2, t3]− [t2, t4]t2
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Versal family at the third level

Using the defining system D(3), we find a lifting of the versal family M2

at the tangent level to a versal family M3 defined over H3:

Lifting of families to H3

We define matrices with coefficients in k〈〈t1, . . . , t4〉〉⊗̂kA:

d2
0 = d1

0 +
∑

tmtn∈B2

tmtn α(m, n)0

=
(
x2 + t1 + t2x y + t3 + t4x + t2t4 − t4t2

)
d2
1 = d1

1 +
∑

tmtn∈B2

tmtn α(m, n)1 =

(
y + t3 + t4x
−x2 − t1 − t2x

)
Considered as matrices with coefficients in H3 ⊗k A, this is a lifting of the
complex (1) at the tangent level to H3 ⊗k A, and M3 = coker(d2

0 ).
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Third order Massey products and lifting of complexes

Let us compute the matrix product d2
0 d

2
1 in k〈〈t1, . . . , t4〉〉⊗̂kA, the

obstruction for lifting the complex to k〈〈t1, . . . , t4〉〉:

d2
0d

2
1 = d1

0d
1
1 + [t2, t4](−x2 − t1 − t2x)

= ([t1, t3]− [t2, t4]t1) + ([t1, t4] + [t2, t3]− [t2, t4]t2) x

= f 31 ω(1) + f 32 ω(2)

We must kill the obstructions by forcing f 31 = f 32 = 0, and then we are
done:

H = T 1/(f 31 , f
3
2 ))

= k〈〈t1, t2, t3, t4〉〉/([t1, t3]− [t2, t4]t1, [t1, t4] + [t2, t3]− [t2, t4]t2)

With d0 = d2
0 and d1 = d2

1 , we then have d0d1 = 0 in H⊗̂kA.
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Conclusions in the noncommutative case

Using noncommutative Massey products up to order three, we have found:

Results in the noncommutative case

• The relations are given by

f1 = f 31 = [t1, t3]− [t2, t4]t1, f2 = f 32 = [t1, t4] + [t2, t3]− [t2, t4]t2

• The pro-representing hull is given by

H = k〈〈t1, t2, t3, t4〉〉/([t1, t3]− [t2, t4]t1, [t1, t4] + [t2, t3]− [t2, t4]t2)

• The versal family is given by M = coker(d0), with free resolution

0←M← H⊗̂kA
d0←− (H⊗̂kA)2

d1←− H⊗̂kA← 0
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