Computing Noncommutative Massey Products

Eivind Eriksen
BI Norwegian School of Management
Algebra, Geometry, and Mathematical Physics Baltic-Nordic Workshop: Tjärnö 25-30 October 2010

Deformation problem

We fix a field k.

Our example:

- $A=k[x, y]$ is the commutative coordinate ring of the affine plane
- $M=A /\left(x^{2}, y\right)$ is considered as a right A-module

We want to compute:

(1) The pro-representing hull $H^{c}(M)$ of the commutative deformation functor $\operatorname{Def}_{M}^{C}$ of the right A-module M
(2) The pro-representing hull $H(M)$ of the noncommutative deformation functor Def_{M} of the right A-module M
(3) The commutative versal family \mathcal{M}^{c} defined over $H^{c}(M)$
(4) The noncommutative versal family \mathcal{M} defined over $H(M)$

The tangent space and obstruction space

We fix a free resolution $\left(L_{\bullet}, d_{\bullet}\right)$ of the right A-module M :

$$
0 \leftarrow M \leftarrow A \stackrel{\left(x^{2} y\right) \cdot}{\leftrightarrows} A^{2} \stackrel{\binom{y}{-x^{2}}}{\leftrightarrows} A \leftarrow 0
$$

To compute $\operatorname{Ext}_{A}^{n}(M, M)$, we consider the complex $\operatorname{Hom}_{A}\left(L_{\bullet}, M\right)$:

$$
M \xrightarrow{\cdot\left(x^{2} y\right)} M^{2} \xrightarrow{\cdot\binom{y}{-x^{2}}} M \rightarrow 0
$$

The maps in this complex are zero, and the tangent space H^{1} and the obstruction space H^{2} for either of the deformation functors are given by

$$
H^{1}=\operatorname{Ext}_{A}^{1}(M, M)=M^{2}, \quad H^{2}=\operatorname{Ext}_{A}^{2}(M, M)=M
$$

where $\operatorname{dim}_{k} H^{1}=4$ and $\operatorname{dim}_{k} H^{2}=2$ since $M \simeq k \oplus k x$ has dimension two.

The pro-representing hulls

From the dimensions of the tangent space and obstruction space, we may conclude that the hulls have the following form:

Pro-representing hulls

There are commutative power series f_{1}^{c}, f_{2}^{c} and noncommutative power series f_{1}, f_{2} such that

$$
\begin{aligned}
H^{c}(M) & =k\left[\left[t_{1}, t_{2}, t_{3}, t_{4}\right]\right] /\left(f_{1}^{c}, f_{2}^{c}\right) \\
H(M) & =k\left\langle\left\langle t_{1}, t_{2}, t_{3}, t_{4}\right\rangle\right\rangle /\left(f_{1}, f_{2}\right)
\end{aligned}
$$

We must use commutative and noncommutative Massey products to compute these power series, and the versal families will be discovered as a side product of these computations.

The Yoneda DGA

We know that $H^{n}\left(Y^{\bullet}\right) \simeq \operatorname{Ext}_{A}^{n}(M, M)$, where $Y^{\bullet}=\operatorname{Hom}_{A}^{(\bullet)}\left(L_{\bullet}, L_{\bullet}\right)$ is the Yoneda DGA (differential graded algebra). The Yoneda DGA is given by

$$
Y^{n}=\operatorname{Hom}_{A}^{(n)}\left(L_{\bullet}, L_{\bullet}\right)=\coprod_{i \geq 0} \operatorname{Hom}_{A}\left(L_{n+i}, L_{i}\right)
$$

for $n \geq 0$, and for any element $\phi=\left(\phi_{i}\right)_{i \geq 0} \in Y^{n}$ with $\phi_{i}: L_{i+n} \rightarrow L_{i}$, the differential $d_{n}: Y^{n} \rightarrow Y^{n+1}$ is given by

$$
d^{n}(\phi)=\psi=\left(\psi_{i}\right)_{i \geq 0}, \text { with } \psi_{i}=\phi_{i} d_{n+i}+(-1)^{n+1} d_{i} \phi_{i+1}
$$

Representations of cohomology classes when $L_{i}=0$ for $i>2$
An element in $H^{1}=H^{1}\left(Y^{\bullet}\right)$ can be represented by a pair $\left(\phi_{0}, \phi_{1}\right) \in Y^{1}$ such that $d_{0} \phi_{1}+\phi_{0} d_{1}=0$. An element in $H^{2}=H^{2}\left(Y^{\bullet}\right)$ can be represented by an element $\omega_{0} \in Y^{2}$. The multiplication $Y^{1} \otimes_{k} Y^{1} \rightarrow Y^{2}$ is given by

$$
\left(\phi_{0}, \phi_{1}\right) \cdot\left(\psi_{0}, \psi_{1}\right)=\phi_{0} \circ \psi_{1}
$$

Yoneda representations of tangent vectors

Let us choose a k-base of the tangent space $H^{1}=\operatorname{Ext}_{A}^{1}(M, M)=M^{2}$ consisting of

$$
t_{1}^{*}=(1,0), \quad t_{2}^{*}=(x, 0), \quad t_{3}^{*}=(0,1), \quad t_{4}^{*}=(0, x)
$$

and a cocycle $\alpha(i)=\left(\alpha(i)_{0} \quad \alpha(i)_{1}\right) \in Y^{1}$ that lifts the cohomology class $t_{i}^{*} \in H^{1}\left(Y^{\bullet}\right)$ for $i=1,2,3,4$:

Yoneda representatives of tangent vectors

$$
\begin{array}{ll}
\alpha(1)=\left\{\left(\begin{array}{ll}
1 & 0
\end{array}\right),\binom{0}{-1}\right\} & \alpha(3)=\left\{\left(\begin{array}{ll}
0 & 1
\end{array}\right),\binom{1}{0}\right\} \\
\alpha(2)=\left\{\left(\begin{array}{ll}
x & 0
\end{array}\right),\binom{0}{-x}\right\} & \alpha(4)=\left\{\left(\begin{array}{ll}
0 & x
\end{array}\right),\binom{x}{0}\right\}
\end{array}
$$

Yoneda representations of obstruction vectors

Let us choose a k-base of the obstruction space $H^{2}=\operatorname{Ext}_{A}^{2}(M, M)=M$ consisting of

$$
s_{1}^{*}=(1), \quad s_{2}^{*}=(x)
$$

and a cocyle $\omega(i)=\left(\omega(i)_{0}\right) \in Y^{2}$ that lifts the cohomology class $s_{i}^{*} \in H^{2}\left(Y^{\bullet}\right)$ for $i=1,2$:

Yoneda representatives of obstruction vectors

$$
\omega(1)=\{(1)\} \quad \omega(2)=\{(x)\}
$$

Versal family at the tangent level

At the tangent level, $H_{2}^{c}=H^{c} / I\left(H^{c}\right)^{2}$ and $H_{2}=H / I(H)^{2}$ both equal $k[\epsilon]=k\left[\epsilon_{1}, \ldots, \epsilon_{4}\right]$, where $\epsilon_{i}=\overline{t_{i}}$ and $\epsilon_{i} \epsilon_{j}=0$ for all i, j.

Lifting of families

We write $A[\epsilon]=k\left[\epsilon_{1}, \ldots, \epsilon_{4}\right] \otimes_{k} A=H_{2} \otimes_{k} A=H_{2}^{c} \otimes_{k} A$, and define liftings of the A-linear differentials d_{0} and d_{1} to $A[\epsilon]$ by

$$
\begin{aligned}
& d_{0}[\epsilon]=d_{0}+\sum_{1 \leq m \leq 4} \epsilon_{m} \alpha(m)_{0}=\left(\begin{array}{ll}
x^{2}+\epsilon_{1}+\epsilon_{2} x & y+\epsilon_{3}+\epsilon_{4} x
\end{array}\right) \\
& d_{1}[\epsilon]=d_{1}+\sum_{1 \leq m \leq 4} \epsilon_{m} \alpha(m)_{1}=\binom{y+\epsilon_{3}+\epsilon_{4} x}{-x^{2}-\epsilon_{1}-\epsilon_{2} x}
\end{aligned}
$$

Versal family at the tangent level

We consider the following sequence of maps, where $M[\epsilon]=\operatorname{coker}\left(d_{0}[\epsilon]\right)$:

$$
\begin{equation*}
0 \leftarrow M[\epsilon] \leftarrow A[\epsilon] \stackrel{d_{0}[\epsilon]}{\leftarrow} A[\epsilon]^{2} \stackrel{d_{1}[\epsilon]}{\leftarrow} A[\epsilon] \leftarrow 0 \tag{1}
\end{equation*}
$$

By construction, this is a complex. In fact, it is instructional to compute the matrix product
$d_{0}[\epsilon] d_{1}[\epsilon]=\left(\epsilon_{1} \epsilon_{3}-\epsilon_{3} \epsilon_{1}\right)+\left(\epsilon_{1} \epsilon_{4}-\epsilon_{4} \epsilon_{1}+\epsilon_{2} \epsilon_{3}-\epsilon_{3} \epsilon_{2}\right) x+\left(\epsilon_{2} \epsilon_{4}-\epsilon_{4} \epsilon_{2}\right) x^{2}$
It is zero since $\epsilon_{i} \epsilon_{j}=0$ in $k[\epsilon]$.
Conclusion: Versal families at the tangent level

- The complex (1) is a free resolution of $M[\epsilon]$ that lifts $\left(L_{\bullet}, d_{\mathbf{0}}\right)$ to $A[\epsilon]$
- The versal families at the tangent level are $\mathcal{M}_{2}=\mathcal{M}_{2}^{c}=M[\epsilon]$

Cup products

The Massey products $\langle\alpha(i), \alpha(j)\rangle$ of order two are called cup products.

Definition of cup products

The commutative and noncommutative cup products are defined in terms of the multiplication in the Yoneda DGA:

$$
\begin{aligned}
\langle\alpha(i), \alpha(j)\rangle^{c} & =\alpha(i) \alpha(j)+\alpha(j) \alpha(i) \\
\langle\alpha(i), \alpha(j)\rangle & =\alpha(i) \alpha(j)
\end{aligned}
$$

The cup products give second order approximations $f_{i}=f_{i}^{2}+I(H)^{3}$ and $f_{i}^{c}=\left(f_{i}^{c}\right)^{2}+I\left(H^{c}\right)^{3}$ of the power series, where

$$
\begin{aligned}
f_{i}^{2} & =\sum_{1 \leq m, n \leq 4} \omega(i)^{*}(\langle\alpha(m), \alpha(n)\rangle) t_{m} t_{n} \\
\left(f_{i}^{c}\right)^{2} & =\sum_{1 \leq m \leq n \leq 4} \omega(i)^{*}\left(\langle\alpha(m), \alpha(n)\rangle^{c}\right) t_{m} t_{n}
\end{aligned}
$$

Computation of cup products

We compute the noncommutative cup products that are non-zero in Y^{2} :

$$
\begin{aligned}
& \langle\alpha(1), \alpha(3)\rangle=(1)=\omega(1) \quad\langle\alpha(3), \alpha(1)\rangle=(-1)=-\omega(1) \\
& \langle\alpha(1), \alpha(4)\rangle=(x)=\omega(2) \quad\langle\alpha(4), \alpha(1)\rangle=(-x)=-\omega(2) \\
& \langle\alpha(2), \alpha(3)\rangle=(x)=\omega(2) \quad\langle\alpha(3), \alpha(2)\rangle=(-x)=-\omega(2) \\
& \langle\alpha(2), \alpha(4)\rangle=\left(x^{2}\right) \quad\langle\alpha(4), \alpha(2)\rangle=\left(-x^{2}\right)
\end{aligned}
$$

We notice that all commutative cup products are zero in Y^{2}.

Second order approximations

$$
\begin{array}{ll}
f_{1}^{2}=t_{1} t_{3}-t_{3} t_{1} & \left(f_{1}^{c}\right)^{2}=0 \\
f_{2}^{2}=t_{1} t_{4}-t_{4} t_{1}+t_{2} t_{3}-t_{3} t_{2} & \left(f_{2}^{c}\right)^{2}=0
\end{array}
$$

Cup products and lifting of complexes

Let us try to lift the complex (1) from the tangent level to $k\left[\left[t_{1}, \ldots, t_{4}\right]\right]$ or $k\left\langle\left\langle t_{1}, t_{2}, t_{3}, t_{4}\right\rangle\right\rangle$ by replacing $d_{i}[\epsilon]$ with $d_{i}^{1}(t)$:

$$
\begin{aligned}
& d_{0}^{1}(t)=d_{0}+\sum_{1 \leq m \leq 4} t_{m} \alpha(m)_{0}=\left(\begin{array}{ll}
x^{2}+t_{1}+t_{2} x & y+t_{3}+t_{4} x
\end{array}\right) \\
& d_{1}^{1}(t)=d_{1}+\sum_{1 \leq m \leq 4} t_{m} \alpha(m)_{1}=\binom{y+t_{3}+t_{4} x}{-x^{2}-t_{1}-t_{2} x}
\end{aligned}
$$

The obstruction for this to be a lifting of complexes is
$d_{0}^{1}(t) d_{1}^{1}(t)=\left(t_{1} t_{3}-t_{3} t_{1}\right)+\left(t_{1} t_{4}-t_{4} t_{1}+t_{2} t_{3}-t_{3} t_{2}\right) x+\left(t_{2} t_{4}-t_{4} t_{2}\right) x^{2}$
Note that the coefficients in front of $1=\omega(1)$ and $x=\omega(2)$ are the second order approximations, and that the obstruction vanishes in $k\left[\left[t_{1}, \ldots, t_{4}\right]\right]$.

The commutative case

In the commutative situation, we have $d_{0}^{1}(t) d_{1}^{1}(t)=0$. We may consider $d_{i}(t)=d_{i}^{1}(t)$ as a matrix with coefficients in $A[[t]]=k\left[\left[t_{1}, \ldots, t_{4}\right]\right] \widehat{\otimes}_{k} A$. Moreover, we consider the complex

$$
\begin{equation*}
0 \leftarrow M(t) \leftarrow A[[t]] \stackrel{d_{0}(t)}{\longleftarrow} A[[t]]^{2} \stackrel{d_{1}(t)}{\longleftarrow} A[[t]] \leftarrow 0 \tag{2}
\end{equation*}
$$

where $M(t)=\operatorname{coker}\left(d_{0}(t)\right)$.

Commutative versal family

- The complex (2) is a free resolution of $M(t)$ that lifts (1) to $A[[t]]$
- The pro-representing hull of the commutative deformation functor $\operatorname{Def}_{M}^{c}$ is $H(M)^{c}=k\left[\left[t_{1}, \ldots, t_{4}\right]\right]$, and $f_{1}^{c}=f_{2}^{c}=0$
- The versal family in the commutative situation is $\mathcal{M}^{c}=M(t)$

The noncommutative case

In the noncommutative situation, the obstruction for lifting the complex (1) to $T^{1}=k\left\langle\left\langle t_{1}, t_{2}, t_{3}, t_{4}\right\rangle\right\rangle$ does not vanish, since

$$
\begin{aligned}
d_{0}^{1}(t) d_{1}^{1}(t) & =\left(t_{1} t_{3}-t_{3} t_{1}\right)+\left(t_{1} t_{4}-t_{4} t_{1}+t_{2} t_{3}-t_{3} t_{2}\right) x+\left(t_{2} t_{4}-t_{4} t_{2}\right) x^{2} \\
& =f_{1}^{2} \cdot \omega(1)+f_{2}^{2} \cdot \omega(2)+\left(t_{2} t_{4}-t_{4} t_{2}\right) x^{2}
\end{aligned}
$$

where $\left(x^{2}\right)$ is a coboundary in Y^{2}. It follows that at the next level, where $I(H)^{3}=0$, we must kill the obstructions by forcing $f_{1}^{2}=f_{2}^{2}=0$:

$$
\begin{aligned}
H_{3} & =T^{1} /\left(I\left(T^{1}\right)^{3}+\left(f_{1}^{2}, f_{2}^{2}\right)\right) \\
& =k\left\langle t_{1}, t_{2}, t_{3}, t_{4}\right\rangle /\left(\left(t_{1}, t_{2}, t_{3}, t_{4}\right)^{3},\left[t_{1}, t_{3}\right],\left[t_{1}, t_{4}\right]+\left[t_{2}, t_{3}\right]\right)
\end{aligned}
$$

where we write $\left[t_{i}, t_{j}\right]=t_{i} t_{j}-t_{j} t_{i}$ for all i, j.

Idea: Immediately defined third order Massey products

A third order Massey product $\langle\alpha(i), \alpha(j), \alpha(k)\rangle$ is immediately defined if the intermediary cup products are coboundaries:

$$
\begin{aligned}
\langle\alpha(i), \alpha(j)\rangle & =d(\alpha(i, j)) \\
\langle\alpha(j), \alpha(k)\rangle & =d(\alpha(j, k))
\end{aligned}
$$

In that case, $\{\alpha(i), \alpha(j), \alpha(k), \alpha(i, j), \alpha(j, k)\}$ is a defining system for the third order Massey product. Given a defining system, the third order Massey product is defined by

$$
\langle\alpha(i), \alpha(j), \alpha(k)\rangle=\alpha(i) \alpha(j, k)+\alpha(i, j) \alpha(k)
$$

Even if the third order Massey product is defined, it may depend on the defining system.

Defining systems for third order Massey products

Let \bar{B}_{1} be the set of monomials in the variables t_{1}, \ldots, t_{4} of order at most one, and extend this to a monomial k-base $\bar{B}_{2}=\bar{B}_{1} \cup B_{2}$ for H_{3}, with

$$
B_{2}=\left\{t_{i} t_{j}: 1 \leq i, j \leq 4\right\} \backslash\left\{t_{1} t_{3}, t_{1} t_{4}\right\}
$$

We use the quadratic relations $t_{1} t_{3}=t_{3} t_{1}$ and $t_{1} t_{4}=t_{4} t_{1}-t_{2} t_{3}+t_{3} t_{2}$ to express any quadratic monomial $\underline{t}=t_{i} t_{j}$ as

$$
\underline{t}=\sum_{\underline{t}^{\prime} \in B_{2}} \beta\left(\underline{t}, \underline{t}^{\prime}\right) \underline{t}^{\prime}
$$

with $\beta\left(\underline{t}, \underline{t}^{\prime}\right) \in k$. For any $t_{m} t_{n} \in B_{2}$, there exists a (non-unique) element $\alpha(m, n) \in Y^{1}$ such that

$$
\sum_{1 \leq i, j \leq 4}\langle\alpha(i), \alpha(j)\rangle \beta\left(t_{i} t_{j}, t_{m} t_{n}\right)=-d(\alpha(m, n))
$$

Computing defining systems

For $\underline{t}=t_{m} t_{n} \in B_{2}$, we compute the right-hand side of the equation

$$
d(\alpha(m, n))=-\sum_{1 \leq i, j \leq 4}\langle\alpha(i), \alpha(j)\rangle \beta\left(t_{i} t_{j}, t_{m} t_{n}\right)
$$

Using the cup-products computed earlier, we see that the right-hand side vanishes in all cases except these:

$$
\begin{aligned}
& d(\alpha(2,4))=-\langle\alpha(2), \alpha(4)\rangle=\left(-x^{2}\right) \\
& d(\alpha(4,2))=-\langle\alpha(4), \alpha(2)\rangle=\left(x^{2}\right)
\end{aligned}
$$

We choose $\alpha(m, n)=0$ for all $t_{m} t_{n} \in B_{2}$ with $(m, n) \neq(2,4),(4,2)$, and

$$
\alpha(2,4)=\left\{\left(\begin{array}{ll}
0 & 1
\end{array}\right),\binom{0}{0}\right\}, \quad \alpha(4,2)=\left\{\left(\begin{array}{ll}
0 & -1
\end{array}\right),\binom{0}{0}\right\}
$$

Then $D(3)=\left\{\alpha(m, n): t_{m} t_{n} \in B_{2}\right\} \cup\left\{\alpha(m): t_{m} \in \bar{B}_{1}\right\}$ is a defining system for third order Massey products.

Third order Massey products

The third order Massey product $\langle\alpha(p), \alpha(q), \alpha(r)\rangle$ is defined for any monomial $\underline{t}=t_{p} t_{q} t_{r}$ in B_{3}^{\prime}, where

$$
B_{3}^{\prime}=\left\{t_{i} t_{j} t_{k}: 1 \leq i, j, k \leq 4\right\} \backslash\left\{t_{i} t_{1} t_{3}, t_{i} t_{1} t_{4}, t_{1} t_{3} t_{i}, t_{1} t_{4} t_{i}: 1 \leq i \leq 4\right\}
$$

Let $\overline{B_{3}^{\prime}}=B_{3}^{\prime} \cup \bar{B}_{2}$. For any monomial \underline{t} of degree at most three, we have

$$
\underline{t}=\sum_{\underline{t}^{\prime} \in \overline{B_{3}^{\prime}}} \beta^{\prime}\left(\underline{t}, \underline{t}^{\prime}\right) \underline{t}^{\prime}+\sum_{1 \leq i \leq 2} \beta^{\prime}(\underline{t}, i) f_{i}^{2}
$$

with $\beta\left(\underline{t}, \underline{t}^{\prime}\right), \beta^{\prime}(\underline{t}, i) \in k$. The third order Massey products are given by

$$
\langle\alpha(p), \alpha(q), \alpha(r)\rangle=\sum_{\substack{t=t^{\prime} t^{\prime \prime} \\ t^{\prime}, \underline{t}^{\prime \prime} \in \bar{B}_{2}}} \alpha\left(\underline{t}^{\prime}\right) \alpha\left(\underline{t}^{\prime \prime}\right) \beta^{\prime}\left(\underline{t}, t_{p} t_{q} t_{r}\right)
$$

Computing third order Massey products

In the Yoneda DGA, the only non-zero products $\alpha\left(\underline{t}, \underline{t}^{\prime}\right)$ with $\underline{t}, \underline{t}^{\prime} \in \bar{B}_{2}$ are

$$
\begin{array}{ll}
\alpha(2,4) \alpha(1)=(-1)=-\omega(1) & \alpha(4,2) \alpha(1)=(1)=\omega(1) \\
\alpha(2,4) \alpha(2)=(-x)=-\omega(2) & \alpha(4,2) \alpha(2)=(x)=\omega(2)
\end{array}
$$

Since the monomials $t_{2} t_{4} t_{1}, t_{2} t_{4} t_{2}, t_{4} t_{2} t_{1}, t_{4} t_{2} t_{2}$ are not involved in any of the relations, the only non-zero third order Massey products are

$$
\begin{array}{ll}
\langle\alpha(2), \alpha(4), \alpha(1)\rangle=-\omega(1) & \langle\alpha(4), \alpha(2), \alpha(1)\rangle=\omega(1) \\
\langle\alpha(2), \alpha(4), \alpha(2)\rangle=-\omega(2) & \langle\alpha(4), \alpha(2), \alpha(2)\rangle=\omega(2)
\end{array}
$$

Third order approximations

$$
\begin{aligned}
& f_{1}^{3}=\left[t_{1}, t_{3}\right]-\left[t_{2}, t_{4}\right] t_{1} \\
& f_{2}^{3}=\left[t_{1}, t_{4}\right]+\left[t_{2}, t_{3}\right]-\left[t_{2}, t_{4}\right] t_{2}
\end{aligned}
$$

Versal family at the third level

Using the defining system $D(3)$, we find a lifting of the versal family \mathcal{M}_{2} at the tangent level to a versal family \mathcal{M}_{3} defined over H_{3} :

Lifting of families to H_{3}

We define matrices with coefficients in $k\left\langle\left\langle t_{1}, \ldots, t_{4}\right\rangle\right\rangle \widehat{\otimes}_{k} A$:

$$
\begin{aligned}
d_{0}^{2} & =d_{0}^{1}+\sum_{t_{m} t_{n} \in B_{2}} t_{m} t_{n} \alpha(m, n)_{0} \\
& =\left(x^{2}+t_{1}+t_{2} x \quad y+t_{3}+t_{4} x+t_{2} t_{4}-t_{4} t_{2}\right) \\
d_{1}^{2} & =d_{1}^{1}+\sum_{t_{m} t_{n} \in B_{2}} t_{m} t_{n} \alpha(m, n)_{1}=\binom{y+t_{3}+t_{4} x}{-x^{2}-t_{1}-t_{2} x}
\end{aligned}
$$

Considered as matrices with coefficients in $H_{3} \otimes_{k} A$, this is a lifting of the complex (1) at the tangent level to $H_{3} \otimes_{k} A$, and $\mathcal{M}_{3}=\operatorname{coker}\left(d_{0}^{2}\right)$.

Third order Massey products and lifting of complexes

Let us compute the matrix product $d_{0}^{2} d_{1}^{2}$ in $k\left\langle\left\langle t_{1}, \ldots, t_{4}\right\rangle\right\rangle \widehat{\otimes}_{k} A$, the obstruction for lifting the complex to $k\left\langle\left\langle t_{1}, \ldots, t_{4}\right\rangle\right\rangle$:

$$
\begin{aligned}
d_{0}^{2} d_{1}^{2} & =d_{0}^{1} d_{1}^{1}+\left[t_{2}, t_{4}\right]\left(-x^{2}-t_{1}-t_{2} x\right) \\
& =\left(\left[t_{1}, t_{3}\right]-\left[t_{2}, t_{4}\right] t_{1}\right)+\left(\left[t_{1}, t_{4}\right]+\left[t_{2}, t_{3}\right]-\left[t_{2}, t_{4}\right] t_{2}\right) x \\
& =f_{1}^{3} \omega(1)+f_{2}^{3} \omega(2)
\end{aligned}
$$

We must kill the obstructions by forcing $f_{1}^{3}=f_{2}^{3}=0$, and then we are done:

$$
\begin{aligned}
H & \left.=T^{1} /\left(f_{1}^{3}, f_{2}^{3}\right)\right) \\
& =k\left\langle\left\langle t_{1}, t_{2}, t_{3}, t_{4}\right\rangle\right\rangle /\left(\left[t_{1}, t_{3}\right]-\left[t_{2}, t_{4}\right] t_{1},\left[t_{1}, t_{4}\right]+\left[t_{2}, t_{3}\right]-\left[t_{2}, t_{4}\right] t_{2}\right)
\end{aligned}
$$

With $d_{0}=d_{0}^{2}$ and $d_{1}=d_{1}^{2}$, we then have $d_{0} d_{1}=0$ in $H \widehat{\otimes}_{k} A$.

Conclusions in the noncommutative case

Using noncommutative Massey products up to order three, we have found:

Results in the noncommutative case

- The relations are given by

$$
f_{1}=f_{1}^{3}=\left[t_{1}, t_{3}\right]-\left[t_{2}, t_{4}\right] t_{1}, \quad f_{2}=f_{2}^{3}=\left[t_{1}, t_{4}\right]+\left[t_{2}, t_{3}\right]-\left[t_{2}, t_{4}\right] t_{2}
$$

- The pro-representing hull is given by

$$
H=k\left\langle\left\langle t_{1}, t_{2}, t_{3}, t_{4}\right\rangle\right\rangle /\left(\left[t_{1}, t_{3}\right]-\left[t_{2}, t_{4}\right] t_{1},\left[t_{1}, t_{4}\right]+\left[t_{2}, t_{3}\right]-\left[t_{2}, t_{4}\right] t_{2}\right)
$$

- The versal family is given by $\mathcal{M}=\operatorname{coker}\left(d_{0}\right)$, with free resolution

$$
0 \leftarrow \mathcal{M} \leftarrow H \widehat{\otimes}_{k} A \stackrel{d_{0}}{\leftarrow}\left(H \widehat{\otimes}_{k} A\right)^{2} \stackrel{d_{1}}{\leftarrow} H \widehat{\otimes}_{k} A \leftarrow 0
$$

References

Noncommutative deformations of modules

- O.A. Laudal, Noncommutative deformations of modules, Homology Homotopy Appl. 2002
- E. Eriksen, An introduction to noncommutative deformations of modules, in Noncommutative Algebra and Geometry 2002.
- A. Siqveland, The Method of Computing Formal Moduli, J. Alg. 2001

