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1 Introduction 

Users of the current Internet are charged either on a flat rate basis, by the minute or 

by volume. All these three pricing regimes will typically lead to inefficient usage 

patterns. This is due to the fact that capacity in network resources in some periods is 

superfluous and in other periods is a scarce resource. In periods where capacity in 

network resources is superfluous, flat rate pricing has nice properties since usage is 

encouraged, whereas time based and usage based tariffing is leading to inefficiently 

low usage. This is opposed to periods where capacity in network resources is scarce. 

In such periods flat rate charging is using a very inefficient allocation mechanism 

since usage is prioritised according to a “first in, first out scheme” and there is no 

mechanism to discriminate between traffic with high and low value to the users. 

There is accordingly a potential for introducing pricing schemes providing incentives 

for more efficient usage.  

Dynamic pricing designed in a proper way might provide such incentives. One 

possible implementation of dynamic pricing is to use Explicit Congestion 

Notification (ECN) marks as pricing signals as proposed in a series of papers by 

Frank Kelly and others (Kelly, 1999, Gibbens and Kelly 1999, Kelly, Maulloo and 

Tan, 1998). In the present paper we will generalise the model presented in Kelly 

1999. Although our results are derived with the ECN scheme in mind, our results 

will typically be applicable to other dynamic pricing schemes.  

The results in Kelly, 1999 are derived under a particular set of assumptions. It is 

assumed that utility functions are concave and the supplier is some sort of benevolent 

monopoly. Neither of these assumptions is fulfilled in the current Internet in general. 

Many applications results in utility being nonconcave in bandwidth. Furthermore, the 

firms currently providing Internet connectivity is maximising profits and is operating 

under (imperfect) competition. In this paper we will show that ECN marks can be 

implemented, also when utility is nonconcave, and the providers are maximising 

profits.  

There is a growing body of literature discussing the pricing of access to- and usage of 

-Internet resources. A recent overview is provided in Dolan (2000). Among the 

suggestions are McKie-Mason and Varian (1992) smart market scheme. The basic 

idea is to let users pay for priority in congested network resources by attaching bids 

to each packet they send. If the packets traverse the network without passing any 
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congested resources, the price of the packet transfer is zero. If a resource in the 

network is congested, it is performed a second price auction such that an equilibrium 

price is established. The network is then placing priority on the packets with the 

highest bids. Since the auction is of the second price type, it is a dominant strategy 

for the user to bid his true valuation. Alternatively one can introduce priority classes. 

Odlyzko (1997) has suggested a scheme called Paris Metro pricing where network 

capacity is divided into two logically separate networks. The price of access to the 

two networks is differentiated. The idea is to let the price differentiation lead to 

product differentiation. Users will expect the high priced network to have higher 

quality. Suppose users are divided among the networks such that the quality of the 

two networks is identical. Then some users will switch from the high to the low 

priced network. This will result in increased quality in the high priced network and 

reduced quality in the low priced network due to increased congestion. In 

equilibrium the quality differentiation and thus difference in priority will reflect the 

pricing differential.  

The present paper is organized as follows: In the next section we will reformulate the 

ECN pricing model such that standard results from economic theory can be 

deployed. In the subsequent sections we will consider perfect competition, dynamics, 

monopoly and duopoly. In the final two sections of the paper we consider inelastic 

users and congestion externalities respectively. 
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2 The basic model 

In this section we will outline the model of pricing by ECN marks as presented in 

Kelly 1999. After that we will modify it in such a way that the structure and 

dynamics of the model is unchanged. The modified model will enable a discussion of 

the topics of this paper, competition stability and nonconcave utility. 

2.1 Production technology, costs and ECN marks 

A network can be considered as a set J of resources. Users are connected to the 

network. Any communication via the network is carried out by using capacity in a 

subset of the resources along a route r such that information (bits) is transported from 

one user to another user. Let R denote the set of all possible routes. Let xr denote the 

rate (i.e. bits/s or packets/s) along route r. Consider a resource j in the network. The 

traffic load of this resource is: 

 yj = Σ s : j ∈ s xs (t) 

As a resource in the network becomes more heavily loaded, an increasing cost is 

incurred. The differentiable function C yj � �  is the rate at which total costs is incurred 

at resource j at load y. We assume that C’ > 0 and C’’ > 0. In Kelly 1999 it is 

assumed that a unit flow through resource j is priced at marginal cost: 

(1.) 
d

dy
C y p yj j� � � �=  

This is the pricing function, i.e. the function is determining the unit price of 

traversing resource j at load y. It is accordingly postulated that price equal marginal 

cost. Since the total load of the resource is the sum of rates for all routes traversing 

the particular resource the unit price of traversing the resource µj is: 

(2.) µ j j s
s j s

t p x t� � � �=
�
��

�
��∈

∑
:

 

This pricing is implemented by ECN marks. Thus the rate at which packets are 

marked in resource j; ρj is chosen such that µ ρ πj jt t� � � �≡ ⋅ , where π is the price per 

marked packet being charged form the customer. Without loss of generality we will 

set the price per mark to unity such that marking rate and price are identical.  
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2.2 User behaviour 

A user derives utility from the rate at which she communicates over route r, i.e. 

Ur(xr). The utility function is assumed to be an increasing strictly concave and 

continuously differentiable function with limxr
U→ ′ = ∞0  and limxr

U→∞ ′ = 0 . The 

user is maximising utility, thus she solves maxU x wr r r� �− . The first order condition 

for the problem of the user is: 

(3.) w t x t U x tr r r r� � � � � �	 
= ′  

Where w is the “weight” or willingness to pay for the user (will be described more 

closely later in the paper). Finally the user is assumed to adjust her rate at any point 

in time according to the following differential equation: 

(4.) 
d

dt
x t w t x t tr r r r j

j r

� � � � � � � �= −
�
��

�
��∈

∑κ µ  

We are now in a position to formulate one of the results as presented in Kelly, 1999: 

 

Kelly’s theorem 2.2: 

The strictly concave function: 

(5.) W x U x C xr r
r R

j s
s j sj J

� � � �= −
�
��

�
��∈ ∈∈

∑ ∑∑
:

 

is a Lyapunov function for the system(1.), (2.), (3.) and (4.). The unique value 

maximising W(x) is accordingly a stable point of the system. 

2.3 A reinterpretation 

In line with Kelly’s notation, let λ r  denote the unit price of traversing route r 

defined by:  

(6.) λ r
r

r

w

x
≡  

Then we can write the optimisation problem of the user as:  

(7.) max U x xr r r r� �	 
− λ  
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Reformulated in this way we have the standard consumer optimisation problem. The 

consumer is buying a number of units x of a good at unit price λ. The problem is to 

determine the number of units such that the difference between utility and the total 

outlay for buying the good is maximised. In our context the "good" is a unit flow 

through a network (e.g. measured in bits/s). The first order condition is ′ =U xr r� � λ , 

which is equivalent to equation (3.) w x U xr r r r= ′� �  above. This first order condition 

is implicitly defining a demand curve, since for any price λ there exist an optimal 

flow x. This demand curve is furthermore downward sloping since U is strictly 

concave. A demand curve is illustrated below: 

xk

λk

 

Figure 1, the demand curve 

The rate given by the demand function is the optimal rate for the user at a given unit 

price and not necessarily the actual rate since prices fluctuate and there is a lag in 

observing the actual price at a point in time due to round trip times etc. In order to 

stress that it is the optimal rate we write it x*. The demand function is: 

(8.) x U x xr r
x

r r r r
r

* arg maxλ λ� � � �	 
= −  

We have defined λ r  as the unit price of traversing route r. This unit price is given, 

from the network, as the number of feedback signals (ECN marks) along route r 

times the price attached to these feedback signals (combining (2.) and the leftmost 

sum in equation (4.): 
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(9.) λ µr j
j r

j s
s j sj r

t p x t= =
�
��

�
��

�

�



�

�
�
�∈ ∈∈

∑ ∑∑� � � �
:

 

Then we can replace w in Kellys system since: w xr r r= λ * . The rate control 

differential equation (4.) can accordingly be written:  

(10.) 
d

dt
x t x t x tr r r r r� � � � � �� �= −κ λ *  

We are now in position to reformulate Kelly’s theorem:  

Proposition 1 

The function  

(11.) W x U x C xr r
r R

j s
s j sj J

� � � �= − +
�
��

�
��∈ ∈∈

∑ ∑∑
:

 

is a Liapunov function for the system consisting of (1.), (8.), (9.) and (10.). 

The proof of proposition 1 is provided in the appendix.  

The unique value minimising the Liapunov function is globally stable, furthermore 

as shown in the appendix this solution is Pareto efficient (maximising social 

welfare). This is hardly a surprise, since prices, by assumption equals marginal cost, 

users maximise utility and there is no market imperfections. This is a special case of 

the first theorem of Welfare economics (Se e.g. Varian, 1992, p. 326). 

By now w is now longer part of the system. Instead we have included a new concept, 

the optimal rate. The user will in equilibrium generate exactly this flow. Outside 

equilibrium the user may generate a flow different form the optimal flow, and then 

the flow will be adjusted according to the rule (10.). By this little exercise we have 

demonstrated that we don’t need to explicitly consider w when we model the market 

interaction and consider dynamic aspects of the system.1 The interaction and 

communication between the network and the user is captured in the two variables, 

price and flow. For a given flow the network determine a price and for a given price 

the user determine a flow.  

                                                 

1 The weight w may however be of interest if one is focusing on fairness and related topics.  
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2.4 The supply side 

Until now we have assumed that prices equal marginal cost without considering what 

market conditions that may result in such a pricing rule. One possibility is of course 

that the network is owned and managed by a benevolent social planner. Alternatively 

we can assume perfect competition.  

Perfect competition in this context implies that there are sufficiently many suppliers 

providing services on any route such that the price charged by the other suppliers are 

unaffected by decisions made by a single supplier. Furthermore, if the supplier set his 

price (marking rate) above the market price, no routes will traverse his resource since 

users can buy connections cheaper elsewhere. If the supplier tries the opposite, to 

determine his price below the market price he will obviously experience reduced 

revenues since he can increase revenues by increasing his price. Thus the suppliers 

are price takers.2 A set of assumptions that yields the pricing rule in equation (1.) is 

then the following:  

Assume suppliers are price takers. Assume furthermore that pricing in a single 

resource only can be contingent upon the state of that particular resource and not 

depend directly upon the state of the neighbouring resources. Thus we assume that 

the pricing rule has to be decentralised.3  

Profit maximising on a particular resource is then implying that the supplier finds the 

optimal aggregated rate y solving max y y C yµ − � �  where µ is the market marking 

rate and C() is the convex cost function. The supplier is accordingly observing the 

market price µ and on this basis maximise the difference between revenues and cost 

by finding the optimal y. The unique solution of this problem is:  

(12.) 
d

dy
C yj j� � = µ  

                                                 

2 In the next section of the paper we will argue that this assumption hardly can be fulfilled in a market 

with ECN pricing. It is possible to argue that the assumption is inconsistent with the idea of pricing 

by ECN marks.  

3 It may be the case that we can relax this assumption, without changing the result. The assumption is 

however simplifying the exposition and it is not unreasonable since the time scale of changing 

prices are a critical factor in obtaining a stable equilibrium.  
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This first order condition gives a functional relationship between marking rate (price) 

and the rate that is passing the resource. Notice that this relationship is identical to 

the pricing rule postulated in (1.). The supply function along a particular route is then 

given by summing up the price at each resource along the route as carried out in (9.):  

λ µr j
j r

j s
s j sj r

jt p x t p y
d

dy
C y= =

�
��

�
��

�

�



�

�
�
�

=
∈ ∈∈

∑ ∑∑� � � � � � � �
:

where  

This is the market supply function on a particular route. We have already argued that 

(8.) is a demand function. We can accordingly illustrate the market equilibrium as the 

intersection of the downward sloping demand function and the upward sloping 

supply function: 

price

The demand function
x U x xr r

x
r r r r

r

* arg maxλ λ� � � �� �= −
λr

eq.

xr
eq.

λ µr j
j r

j s
s j sj r

t p x t= =
�
��

�
��

�
�


�
�
�

∈ ∈∈
∑ ∑∑� � � �

:

The supply function 

 

Figure 2, Market equilibrium 

The system is in equilibrium in the intersection point between these two curves. 

Notice that a resource in general is used on more than one route, thus there will be 

“across route effects” in the sense that when the load on one route increase 

(decrease), the supply function for all related routes will shift upwards (downwards). 

As already pointed out, the assumed price taker assumption on the supply side can 

hardly be expected to be fulfilled in the market place. First of all, in the presence of 

economies of scale, there will be a finite number of suppliers. Secondly, the price 

taker assumption may be problematic. On a very short timescale, taken literally, the 

assumption of suppliers being price takers is clearly violated. Suppliers can change 

pricing schedules in the middle of a session. The market response will be delayed 
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due to the round trip time in the network. In a repeated game between supplier and 

user we may however find that the equilibrium is to never change the pricing 

schedule in the middle of sessions because users “punish” this type of behaviour in 

such a way that it not is worthwhile for the supplier. 

It can also be argued that the price taker assumption hardly can be fulfilled on a 

longer time scale. The price taker assumption implies that the supplier is observing 

the market price and based on this price determine the rate that he would like to pass 

trough the resource. We can see this directly from the optimisation problem we 

solved above where the aggregated rate and not price is the decision variable; 

max y y C yµ − � � . This is opposed to how pricing by ECN marks are described in the 

literature. E.g. in Kelly (2000), p. 5 we read: “Suppose that as a resource become 

more heavily loaded it generates feedback signals intended to indicate congestion ()”. 

Thus it seems like the decision variable is (by construction) the feedback signal 

(price) and not the aggregated rate traversing the resource. If the suppliers are 

deploying a three- stage procedure, they may however act as if they are price takers. 

At the first stage suppliers observe the market price, at the second stage, optimal 

aggregated rate given this price is calculated and then finally at the third stage the 

suppliers determine a pricing schedule consistent with the optimal aggregated rate.  

As indicated in the paragraphs above it is possible to construct cases where price 

taker behaviour is possible. A necessary condition in any case is however that it is 

very many suppliers (infinitely many) on any route. This requirement can hardly be 

meet in the current Internet. Thus, we have to relax the assumption of perfect 

competition. 

The straight- forward way of relaxing the price taker assumption is to introduce 

imperfect competition where suppliers indeed set their own price. Before looking 

into imperfect competition we will however take a brief look at dynamic properties 

of the model because dynamics under imperfect competition will have similarities to 

dynamics under perfect competition since the demand side will remain unchanged. 
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3 Dynamics and stability 

We have already proved that the system is globally stable (see the appendix). It may 

however be of interest to discuss the dynamic properties of the system. The major 

difference between the market considered here and a standard economics textbook 

market is that the user will set his actual rate x(t) at a point in time and not observe 

the actual price that he will pay for the flow until a later point in time t + T.4 Since 

prices fluctuate dynamically in the network, the user will, on a very short time scale, 

not be able to adjust his rate optimally. There is a lag. Then the rate x(t) can be said 

to be determined on the basis of the expected prices at time t. A possible 

interpretation of the rate control differential equation is accordingly that it implicitly 

describes how the user is updating his price expectations. 

As long as the Liuapunov function is strictly convex the system is stable. The 

curvature of this function is determined by the slope of the demand and supply 

functions. In the standard case with a downward sloping demand function and an 

upward sloping supply function the convexity assumption is fulfilled. Furthermore, 

as long as ∂
∂ − <λ λ λD S� � � � 0  where D and S is the demand and supply function 

respectively we will typically have a stable system (see e.g. Varian 1992 p. 399). 

Thus there can exist stable solutions where both the demand and supply curves are 

downward sloping and similarly we can have a stable system where the curves slopes 

upwards. A necessary condition is however that the demand function crosses the 

supply function from “below” such that there is excess demand for low prices and 

excess supply for high prices. 

These stability properties may however be compromised if we take explicitly into 

account the time lag between changes in price signals and the changes in the sending 

of ECMs. If we let ∆t denote the lag, then one can write equation (10) as: 

 �
*x t t t x t t x tr r r r� � � � � � � �	 
= − − −κ λ ∆ ∆  

The stability properties of this system are not obvious. Work on similar equations 

from the natural resource literature (see e.g. Wangersky and Cunningham, 1957) 

indicates that such systems are notoriously cyclical. One would expect that for small 

values of ∆t, the cycles would be of marginal importance. However this would 

                                                 

4 This delay is due to round trip times  



12  

depend on a number of factors. For instance, it may well be the case that the size of κ 

plays a role in promoting the cyclical nature of the solution. The larger the value of 

κ, the faster may x zoom by it’s equilibrium value. This is an interesting contrast 

with the non-lagged case, where the larger the size of κ, the faster will the system 

approach its equilibrium. The properties of such lagged differential equations within 

the context of internet pricing is very much a subject for further research. 

Modeling rate control in the Internet as a continuous differential process is an 

appropriate approximation in resources where traffic is aggregated over many users. 

The rate control carried out by a single user is however more like a discrete process. 

Taking this fact into consideration as well as the time lag considered above we can 

reformulate the rate control differential equation into a fairly simple discrete dynamic 

equation: 

x t x t t x t x tr r r r r r+ − = −1� � � � � � � �	 
 � �κ λ λ*  

With such a rate control equation the system can be stable, cyclical or unstable 

depending upon the slope of the demand function, the supply function and the value 

of the parameter κ. Below we will provide numerical illustrations where we for 

simplicity assume linear supply and demand functions. We will consider the 

following simplified system: 

 

Demand function:

Supply function:

Rate control:

x A b

mc x

x t x t t x t x tr r r r r r

*

*

= −
= ⋅

+ − = −

λ
λ

κ λ λ1� � � � � � � �	 
 � �
 

Below we have illustrated this system for parameter values: A = 5, b = 1,  

mc = 0.7, κ =0.5 and with an initially expected price= 4.5 
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Figure 3 a stable system 

In figure 3, the user is assumed to initially expect the price to be 4.5 (based on earlier 

experience etc). With this expected price it is optimal for the user to send at a rate of 

0.5. Since this is a very low rate the network responds by determining a price of 0.35. 

Given this low price the user employ his rate control function to update his price 

expectation to 3.77 and then it is optimal to adjust the sending rate to 1.22 this goes 

on and the system is converging to the equilibrium value of price = 2.05 and rate = 

2.94. 

By small parameter changes, the behaviour of this system change radically, for 

instance if the parameter κ is increased from 0.5 to 0.7 and we keep other parameters 

at the same values as in figure 3 (A = 5, b = 1, mc = 0.7) the system becomes 

cyclical: 
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Figure 4, a cyclical version 

If we increase the parameter κ even more, to e.g. 0.9 the system explodes as 

illustrated below (for the same parameter values as earlier): 
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Figure 5 an exploding system 

Notice however that the simplified linear demand and supply function used in these 

illustrations are only approximations to the demand and supply functions resulting 

from the assumed utility and cost function used in the previous sections. This 

approximation is in particular leading to errors when values approach zero. 
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Below we illustrate the system for different slopes of the demand function and obtain 

a stable, cyclical and an exploding system respectively:5 
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Figure 6 Systems with variations in the demand function 

                                                 

5 In figure 6 we have used, parameter values of mc = 0.7, κ = 0.5, and initial expected price = 4.5. The 

three different dynamic patterns are obtained by variations in the demand function, in the left most 

figure the we use A = 5 and b = 1, in the centre figure we use A = 7.5 and b = 1.5 and finally to the 

right we use A = 10, b = 2. 
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All of the demand functions illustrated in figure 6 are plausible but they result in 

radically different dynamic patterns. 

We obtain similar results by playing around with the slope of the supply function:6  
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Figure 7, Systems with variations in the supply function 
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As already stated, the linear functions used here are only approximations to the 

functions resulting from the assumed utility and cost function postulated in earlier 

sections of this paper. Thus the behaviour of the system may be quite different when 

it is far off the equilibrium values. Systems like the one to the right of figure 7 may 

then not explode but they will be extremely cyclical.  

                                                                                                                                           

6 In figure 7 we have used parameter values A = 5, b = 1, κ = 0.5, and initial expected price = 4.5. The 

three different dynamic patterns are obtained by variations in the supply function, in the left most 

figure we use mc = 0.7, in the centre we use of mc = 1, and to the right we use mc = 1.5. 
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4 Monopoly 

As argued above, the price taker assumption may be inconsistent with the principles 

of pricing by ECN marks. We will in this section consider a monopoly on a 

particular route and let the network, or the supplier determine the pricing policy in 

order to maximise profits. In this section we will not take into account the possible 

dynamic problems discussed in the previous section. We will assume the continuous 

version of the rate control function. Thus, system dynamics are well behaved and we 

can focus on monopoly.  

Under monopoly the supplier is maximising the difference between revenues and 

costs on the route under the constraint that demand is a downward sloping function 

of the price. The optimisation problem is accordingly: 

π λ λ
λr r r j r

r j rj r
r r r

r

x C x x x= −
�
��

�
��

�

�



�

�
�
�

=
∈∈

∑∑max .
:

s t. � �  

In this problem the price is the decision variable and not quantity. By inserting the 

demand function and differentiating with respect to price we obtain the following 

first order condition (with our assumptions with respect to utility and cost functions 

second order conditions are fulfilled): 

x
C

x

C

x
xr r r

x j

r

x

j r

j

rj r
r r r x

r

r

r

r r

r

λ λ λ λλ λ
λ

� � � � � � � �+ −
∂ ⋅

∂
= ⇔

∂ ⋅
∂

= +∂
∂

∂
∂

∈ ∈
∂
∂

∑ ∑0
1

 

This is a standard monopoly solution. The optimal solution is to set marginal cost 

equal to marginal revenue. Marginal cost consist of the sum of marginal costs along 

the path and marginal revenue is the revenue from the marginal unit plus the negative 

effect of receiving a lower price for all the infra marginal units. The monopoly 

solution is illustrated below: 
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Figure 8 Monopoly 

This is a standard textbook result. The optimal solution for a monopoly is where 

marginal revenue equals marginal cost. Notice in particular that the price is higher 

than the marginal cost. Thus this solution is not Pareto optimal.  
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5 Duopoly 

Consider a market with two competing network providers that both deploy dynamic 

pricing in the network. For simplicity we will assume that the service provided by 

these two suppliers are perfect substitutes in the eyes of the consumers. We will 

assume that there always is users comparing the effective price charged by the two 

network and route their traffic to the network with the lower price such that an 

equilibrium is characterised by a distribution of traffic such that the price in the two 

networks are identical.  

We are basically searching for equilibrium in price schedules. As a first attempt to 

describe such a game we will consider an extremely simplified model. We will 

assume that market demand is given by the linear function x D d= − λ  (where the 

parameters D > 0 and d > 0). We will assume that the two firms (firm A and B) set 

their price functions sequentially. At the first stage firm B determine its price 

function and in stage 2 firm A set its price function. For simplicity we will assume 

that both firms are restricted in determining pricing rules. The price of traversing a 

particular network is proportional to total load in that network.7 Thus firm i has 

pricing rule: λ γi i ix= . The decision variable for the firms is accordingly to 

determine the slope of the pricing function; γ. Finally we will assume that the two 

firms have identical cost structures and marginal costs are assumed constant and is 

normalised to zero. The game will be solved by backward induction. 

Assume firm B is the first mover. Firm A will then at stage 2 maximise profits 

subject to the demand function constraint and the constraint coming from the pricing 

decision that already has been made by firm B. Let λ B Bbx=  be the price function 

determined by firm B at stage 1. We will analyse the decision at stage 2 of the game 

by assuming that firm A choose one single optimal equilibrium price. At the end of 

this section we will demonstrate that this equilibrium price can be implemented by a 

permissible pricing function. At stage 2, firm A is accordingly maximising profits 

subject to the residual demand function he is facing. At any price he sets λ, firm B 

                                                 

7 Both the assumption of a sequential game and the restriction on the pricing rule is chosen in order to 

simplify the game. It is evidently a subject for further studies to consider a simultaneous move game 

where more general pricing functions are allowed.  
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will capture a fraction of total demand: x
bB = λ

 thus firm A is facing the residual 

demand function: 

x D x D d
bA Bλ λ λ λ λ� � � � � �= − = − −  

Supplier A is solving the following optimisation problem at stage 2: 
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At stage 1 supplier B knows what supplier A is going to do at stage 2, supplier 2 will 

thus maximise profits by determining an optimal price function λ B Bbx= . For a 

given b Supplier B knows that the number of units he will sell in the market place is: 

λ λ= ⇔ = =
+

bx x
b

D

dbb B 2 1� �
 

He will then maximise profits by determining optimal slope for his price function: b:  
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The denominator will never be zero, thus making the numerator equal to zero is the 

only candidate optimal slopes for the pricing function, thus: 

b
d

= 1
 

By inserting optimal values we can now describe equilibrium in the model: 

b
d

D

d
x

D
x

D
B A

* * * *, , ,= = = =1

4 4 2
λ  

Finally we can demonstrate our claim that firm A (the second mover) can indeed 

implement the solution above by determining a constant slope α for his price 

function satisfying: 

 λ α α λ* *
*

*= ⇔ = =x
x dA

A

1

2
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Below we provide a numerical illustration of the equilibrium. Parameter values are D 

= 5, and d = 1: 

0

1

2

3

4

5

0 1 2 3 4 5

The demand function

Price function firm A

Price function firm B

Aggregated price function

Equilibrium

Quantity sold by firm A

Quantity sold by firm B

 

Figure 9, the duopoly solution in a sequential move game 

The equilibrium in this simple sequential duopoly model is accordingly characterised 

by an increasing aggregated price function. If, for some reason, the market is outside 

equilibrium, the rate control dynamics outlined under perfect competition will be 

deployed and thus this market will have similar dynamic properties as the perfect 

competition model.  

It is evident from the equilibrium solution that the second mover sells a higher 

quantity in equilibrium. Since the prices charged by the firms are identical and 

marginal costs are identical (and normalised to zero), the second mover derives twice 

as high profits as the first mover. Thus if timing of announcing price rules is 

endogenous both firms would seek to postpone this decision as long as possible. This 

is sort of dynamic game is outside the scope of this paper. 
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6 Inelastic traffic 

Until now we have made quite restrictive assumptions with respect to the utility 

function. We have assumed that utility is a continuous, increasing strictly concave 

function of the rate. Following Schenker (1995) such traffic is called elastic traffic. 

The shape of a utility function where the only argument is rate will evidently depend 

upon the application that the user(s) is running. File transfers may be of an elastic 

kind whereas the utility function for a user running a real time voice application will 

typically have a radically different shape. If the rate is below a given threshold the 

utility is near zero since the quality of the transmitted voice is extremely low. If the 

rate is increased above the threshold utility will not be further increased since the 

application not can take advantage of the increased band-with. 

Consider a user with a fixed-rate application (in Schenker’s terminology a hard real 

time application). The utility function is given by: 

U x
x x

x x
� � =

<
≥

�
�
�
0 for

for

~

~υ
 

The user is maximising utility minus outlay. The demand function is accordingly: 

x
x x

x
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Thus the demand function is like: 

price

rate  

Figure 10, Demand from a user with a hard real time application 

The rate generated by this user has a jump at threshold υ, and thus the horizontal line 

segment is indicating a discontinuity in demand since 

lim , lim
p p

D p x D p
→ →− +

= =
υ υ

� � � �0 0 . In a network with inelastic users there may 
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accordingly be problems with existence of equilibrium if the supply function crosses 

the demand function at a horizontal segment. We can however add realism to the 

model by relaxing the assumption of identical users. The threshold υ will typically be 

a function of disposable income for the user, type of real time application and in 

what stage of a real time session the user is (the threshold will probably be different 

in the beginning as compared to the end of e.g. a movie). By aggregating demand 

functions over many heterogeneous inelastic users we obtain a function that is almost 

nice and downward sloping: 

price

rate  

Figure 11, demand aggregated over many users with hard real time applications 

If the supply function crosses at a vertical segment, equilibrium will exist whereas if 

it crosses at a horizontal segment the problem of non-existence persists. According to 

Schenker (1995) real time applications like audio and video are being developed in 

the direction of becoming delay or rate adaptive. In such cases, utility as a function 

of rate is S shaped as illustrated below: 

Utility

rate
x0  

Figure 12, utility for a rate adaptive application 
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For a sufficiently high price such a user will not generate traffic. At a given threshold 

price, illustrated by the dotted tangent in the figure above, demand generated by the 

user will have a discontinuous jump to x0. As the price is further decreased, the 

optimal rate will move along the concave segment of the utility function. Thus we 

obtain a demand function like the one illustrated below: 

price

ratex0  

Figure 13, demand from a user with a rate adaptive application 

Aggregation over many heterogeneous consumers, some running elastic, some 

inelastic and some rate (delay) adaptive applications yields a downward sloping 

demand function with some horizontal segments: 

rate

price

 

Figure 14, aggregated demand 

The discontinuities on the demand side in the model presented here is very similar to 

the discontinuities we have in any economy where consumers have unit demand (as 

is the case for most goods sold in discrete units like cars, computers or books). 

Furthermore it is similar to the supply side in an industry where average cost curves 

are U shaped. As stated by Varian (1992) p. 394: “the discontinuities will be 

irrelevant if the scale of the market is sufficiently large”. Thus when the (marginal) 
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discontinuities are small compared to the total load in each resource, there will 

generally be a price vector that results in demand being close to supply.  
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7 Externalities 

In the models discussed in this paper we deploy a convex cost functions. According 

to Gibbens and Kelly (1999), p. 5 the derivative of the cost function is equal to 

shadow price at the resource. This cost stems from the (potential) loss of packets as 

resources become overloaded. Packet loss is partly a cost that is carried by the 

network since packet has to be resent. There will be an opportunity cost associated 

with the required capacity required to resend packets. Packet loss, will however also 

be a cost to users because it typically results in degradation of service due to delays 

jitter etc. This is a classic externality. Network owners will in general not fully take 

into account this externality. We will in the following make a minor change to the 

model by including a negative externality in the utility function and demonstrate that 

resources in equilibrium will be over congested. This will be done in a straight 

forward textbook way. Let total utility for user i be:  
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This is gross utility minus outlay for network usage in the same way as in the 

previous sections. In the utility function a second term is however included. This is 

the inconvenience due to packet loss. Packet loss is a function of total traffic on the 

network. As packet loss increase, utility decrease. User optimisation yields: 

x U x X x
U

x

U

X
i

x
i i i

i

i

i

i

* arg max , ,λ λ λ� � � �	 
= − ∂
∂

+ ∂
∂

=FoC:  

For simplicity we will assume that the network consist of one single resource and the 

cost taken into consideration is only the packet loss costs carried by the network. The 

pricing rule is thus price equal to marginal cost;8 λ = C’(X). Market equilibrium is 

accordingly similar to what we have studied in earlier sections of this paper, 

marginal individual willingness to pay equals marginal cost in optimum. The socially 

optimal solution has however changed, maximising welfare yields: 

                                                 

8 We are thus, for simplicity, assuming that suppliers are price takers. 
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The socially optimal solution is to equate marginal cost in the network with the total 

marginal social willingness to pay. The first two terms in this willingness to pay is 

identical to the individual willingness to pay considered above. The third term 

captures the negative externality. The marginal user imposes a negative externality 

on all the other users by increasing their waiting time, jitter etc. Thus social marginal 

willingness to pay is below individual willingness to pay. The solutions are 

illustrated below: 
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Figure 15, A market with congestion externalities 

Market equilibrium is indicated by eq in the figure and the socially optimal solutions 

is indicated by Wmax. The market solution results in an over utilisation of network 

resources. This is also a standard textbook result, (see e.g. Varian, 1992, pp 432 – 

439) The welfare loss can be corrected. A welfare maximising benevolent monopoly 

can increase the price of traversing the network or in a competition scenari or a 

regulator can introduce a tax on usage of network resources. In any case the price 

paid by consumers will be equal to: λ = C’(X) + t. Where the tax, t, is identical to the 

value of the adverse effect on all other users, i.e.: 

 t
U

X
j

j i

= −
∂
∂≠

∑  
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Then the individual first order conditions yields a solution identical to the first best 

solution: 

x U x X c t x
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This solution is illustrated below: 
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Figure 16 Externalities and a tax 

In figure 16 we have illustrated the case where a tax added to the price (that is equal 

to marginal cost) yields the optimal solution. Each single user is not directly taking 

into account the negative externality, but since the tax, by construction, exactly 

equals the negative externality, the user act as if they considered the negative 

externality.  
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8 Conclusions 

In this paper we have demonstrated that the ECN pricing scheme can be reformulated 

such that we are in a position to take advantage of standard results from the 

economics literature.  

We have found, on the one hand, that the demand side as outlined in e.g. Kelly 1999 

fits nicely with standard economic theory. On the other hand the necessary 

assumptions required to make the ECN set-up directly consistent with economic 

theory on the supply side is unlikely to be fulfilled in the market place. The presence 

of economies of scale will violate the assumption of (infinitely) many suppliers and 

the price taker assumption may thus be inconsistent with the design of ECN marking. 

In the paper we have relaxed the strict assumptions by considering imperfect 

competition. The equilibrium pricing rules will then however deviate from the 

pricing rule in the ECN literature. Equilibrium usage of network resources is then 

typically deviating from socially optimal usage.  

We have furthermore discussed stability properties of the system. In the ideal model 

the system is globally stable, but as realism (?) is added to the model by considering 

discreteness and timelags, the dynamic properties of the model is changing and one 

may e.g. experience cyclical behaviour.  

Furthermore, by taking advantage of standard aggregation results from the 

economics literature we have demonstrated that the presence of inelastic users 

resulting in a discontinuous demand function not necessarily will result in problems 

with existence and stability. It is basically a question of scaling. When (marginal) 

discontinuities are small compared to the total load in each resource, there will 

generally be a price vector that results in demand being very close to supply. Finally 

we have demonstrated that when the cost of congestion not exclusively is carried by 

the network, the presence of congestion results in a classic externality and network 

resources will accordingly be over-utilised in equilibrium.  
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Appendix A, proof of proposition 1 

In order to investigate the properties of the system (1.), (8.), (9.) and (10.) we first 

examine whether equilibria exists and then investigate stability. The system is: 
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From (8.) it follows that xr must be defined by the equation ′ =Ur rλ . It follows that if 

x t x tr r
*� � � �=  and ′ =Ur rλ  holds for all r, then �ps  and �λ r  is zero. Note that in this 

equilibrium utility is maximised and (by assumption) prices are equal to marginal 

cost. Thus this equilibrium is optimal in the sense that social welfare is maximised. 

This observation turns out to be important in our discussion of stability. Let us refer 

to the equilibrium values of xr as x .  

In order to discuss stability it is beneficial to rewrite the system (*) into: 
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This system is autonomous and the stability theory is a bit less involved than if we 

worked with the original system. The function:  
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is a Liapunov function for the system (*) if the following conditions hold, Varian 

(1992): 

x  minimise W(x).  

� �W x W x x x� � � �= < ∀ ≠D x0  

The first part is easily checked. If x  minimises W(x), then x  maximises -W(x). But 

if x  maximise -W(x), this implies that x  maximises social welfare, and this is 

exactly what we found would occur in equilibrium. It follows the assumptions made 
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about the Ur and the cost functions that there is only one value of x that maximise 

social welfare. Thus the equilibrium x  is the same as the x  that minimise W(⋅).  

In order to check the second part we calculate �W x� � . This expression is given by: 

� � � �W x U x C x U C xr r j r
j Jr R

r j
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r
r R
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��∈∈ ∈∈

∑∑ ∑∑  

If we examine the last expression we see that it consists of a sum with a term for 

every r. Each element in the sum is the marginal benefit of an additional unit of xr 

multiplied by the differential equation for xr. If xr is below the social welfare 

maximising level of xr , then marginal benefit is positive and � ′xr  is positive. If xr is 

above the social welfare maximising level of xr , then marginal benefit is negative 

and � ′xr  is negative. (This follows from the strict concavity of the Liapunov 

function.9) Either way the product is strictly positive. If xr is exactly at xr , then the 

product of marginal benefit and �xr  is zero. Thus �W x� �  is strictly negative for all x 

except at x = x  and the proof is completed.  

 

 

                                                 

9 In fact it may hold for more general utility and cost functions. This needs to be checked. 
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