Fuel Subsidies, the Oil Market, and the World Economy

Nathan Balke*, Michael Plante and Mine Yücel

*Southern Methodist University
Federal Reserve Bank of Dallas

June 25, 2014
Disclaimer

The results presented here are my own and do not necessarily reflect the official views of the Federal Reserve Bank of Dallas nor the Federal Reserve System as a whole.
The results presented here are currently preliminary in nature. Not for citation at this point in time.
Introduction

- Consumer subsidies on fuel products found in many countries
- Subsidies found in both producing and non-producing countries
- But oil producers are most important subsidizers
Introduction

- IEA WEOs, IMF country reports, others
- Coady et al. (2006), del Granado et al. (2010), other IMF papers
- Hartley and Medlock (2009)
- Plante (2014)
We explore how these subsidies qualitatively and quantitatively impact:

- World oil market
- Macroeconomic variables
- Welfare
Data

- Group 24 countries as “subsidizers”
- Identified using retail fuel price data
- List includes most subsidizing producers
Table: Countries identified as subsidizers

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>Indonesia</td>
<td>Qatar</td>
</tr>
<tr>
<td>Angola</td>
<td>Iran</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>Iraq</td>
<td>Sudan</td>
</tr>
<tr>
<td>Bahrain</td>
<td>Kuwait</td>
<td>Syria</td>
</tr>
<tr>
<td>Bolivia</td>
<td>Libya</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>Brunei</td>
<td>Malaysia</td>
<td>UAE</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Nigeria</td>
<td>Venezuela</td>
</tr>
<tr>
<td>Egypt</td>
<td>Oman</td>
<td>Yemen</td>
</tr>
</tbody>
</table>
Some statistics about the 24 countries:

- Consume 13.5 percent of world’s oil
- Produce 48 percent of world’s oil
- Current retail prices about 1/3 of U.S. prices (ex. tax)
Simple Model

- Two country model with countries a and o
- Country o produces oil, represents subsidizers
- Country a produces oil and non-oil goods
- Countries a is a net importer of oil
- Superscripts denote countries for $j = a, o$
Simple Model

- O^j denotes consumption of oil in j

- Denote θ^o as share of world oil consumption due to o

- Consumers in o pay $P_s \leq P_o$

- Absolute value of price-elasticity of demand is ϵ
Simple Model

- Y^o_j denotes supply of oil in j
- Denote χ^o as share of world oil production due to o
- Price elasticity of oil supply is η_j
- World price of oil, P_o, adjusts to clear oil market,

$$O^a + O^o = Y^a_o + Y^o_o.$$ (1)
Experiment

- Consider unspecified percent change in P_s ($\%\Delta P_s$)

- Calculate how $\%\Delta P_s$ affects oil market

- Consider two cases:
 1. Perfectly inelastic supply ($\eta_j = 0$)
 2. Elastic supply ($\eta_j > 0$)

- For discussion will focus on $\%\Delta P_s < 0$
Results (Perfectly Inelastic Supply)

Change in country o oil consumption:

$$\%\Delta O^o = -\epsilon \%\Delta P_s. \quad (2)$$
Results (Perfectly Inelastic Supply)

Change in country o oil consumption:

$$\% \Delta O^o = -\epsilon \% \Delta P_s.$$ \hspace{1cm} (2)

Change in world price of oil:

$$\% \Delta P_o = -\frac{\theta^o}{(1 - \theta^o)} \% \Delta P_s.$$ \hspace{1cm} (3)
Results (Perfectly Inelastic Supply)

Change in country o oil consumption:

$$\%\Delta O^o = -\epsilon \%\Delta P_s. \quad (2)$$

Change in world price of oil:

$$\%\Delta P_o = -\frac{\theta^o}{(1 - \theta^o)} \%\Delta P_s. \quad (3)$$

Change in country a oil consumption:

$$\%\Delta O^a = \epsilon \frac{\theta^o}{(1 - \theta^o)} \%\Delta P_s. \quad (4)$$
Results (Supply Elasticity > 0)

Change in country o oil consumption:

$$\%\Delta O^o = -\epsilon \%\Delta P_s.$$ \hspace{1cm} (5)
Results (Supply Elasticity >0)

Change in country o oil consumption:

$$\%\Delta O^o = -\epsilon \ %\Delta P_s. \quad (5)$$

Change in world price of oil:

$$\%\Delta P_o = \frac{-\theta_o \epsilon}{(1-\theta^o) \epsilon + (1-\chi^o) \eta_a + \chi^o \eta_o} \ %\Delta P_s. \quad (6)$$
Results (Supply Elasticity >0)

Change in country o oil consumption:

$$\%\Delta O^o = -\epsilon \%\Delta P_s.$$ \hspace{1cm} (5)

Change in world price of oil:

$$\%\Delta P_o = \frac{-\theta_o \epsilon}{(1 - \theta^o)\epsilon + (1 - \chi^o)\eta_a + \chi^o \eta_o} \%\Delta P_s.$$ \hspace{1cm} (6)

Change in country a oil consumption:

$$\%\Delta O^a = \epsilon \frac{\theta_o \epsilon}{(1 - \theta^o)\epsilon + (1 - \chi^o)\eta_a + \chi^o \eta_o} \%\Delta P_s.$$ \hspace{1cm} (7)
Some statistics about the 24 countries:

- Consume 13.5 percent of world’s oil
- Produce 48 percent of world’s oil
- Current retail prices about 1/3 of U.S. prices (ex. tax)
Introduction

- Two country DSGE model
- Countries a and o represent same blocs as before
- Households maximize utility subject to budget constraints
- Endogenous production of oil and non-oil goods
- Focus on steady states (comparative statics analysis)
Production of non-oil good

Firm’s problem:

$$\max_{N_t^a, K_{t-1}^a, O_{y,t}^a} \Pi_{a,t}^a = Y_{a,t}^a - W_t^a N_t^a - r_t^a K_{t-1}^a - P_{o,t} O_{y,t}^a,$$ \hspace{1cm} (8)

where technology is

$$Y_{a,t}^a = Z_{y,t}^a N_t^a \alpha \left[\omega_y^a K_{t-1}^{a 1-\nu} + (1 - \omega_y^a) O_{y,t}^a 1-\nu \right]^{\frac{1-\alpha}{1-\nu}}.$$

\hspace{1cm} (9)
Production of oil in a

Oil producing firm maximizes

$$\max_{Y_{o,t}} \Pi_{o,t}^a = P_{o,t} Y_{o,t}^a - X_{o,t}^a,$$ \hspace{1cm} (10)

where

$$X_{o,t}^a = \kappa_a \left(Y_{o,t}^a \right)^{1 + \frac{1}{\eta_a}} \left(1 + \frac{1}{\eta_a} \right).$$ \hspace{1cm} (11)
Production of oil in a

Oil producing firm maximizes

$$\max_{Y_{o,t}^a} \Pi_{o,t}^a = P_{o,t} Y_{o,t}^a - X_{o,t}^a,$$ \hspace{1cm} (10)

where

$$X_{o,t}^a = \kappa_a \frac{(Y_{o,t}^a)^{1+\frac{1}{\eta_a}}}{1 + \frac{1}{\eta_a}}.$$

- Price elasticity of supply given by η_j for $j = a, o$
- Costs increasing in oil output
- Lower marginal cost as η increases
The household maximizes lifetime utility

\[E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{a,1-\sigma}}{1-\sigma} - \kappa \frac{N_t^{a,1+\mu_n}}{1+\mu_n} \right), \]

(12)

with aggregate consumption given by

\[C_t^{a} = \left[(1 - \gamma_o^{a}) A_{c,t}^{a,1-\mu_c} + (\gamma_o^{a}) O_{c,t}^{a,1-\mu_c} \right]^{\frac{1}{1-\mu_c}}, \]

(13)

and subject to the budget constraint

\[A_{c,t}^{a} + P_{o,t}^{a} O_{c,t}^{a} + I_t^{a} = W_t^{a} N_t^{a} + r_t^{a} K_{t-1}^{a} + \Pi_{a,t}^{a} + \Pi_{o,t}^{a}. \]

(14)
Current Account

Current account equation for \(a \)

\[
P_{o,t} \left(O_{c,t}^a + O_{y,t}^a - Y_{o,t}^a \right) = Y_{a,t}^a - A_{c,t}^a - I_t^a - X_o^a.
\]

(15)

Oil import bill for \(a \)

\[
P_{o,t} \left(O_{c,t}^a + O_{y,t}^a - Y_{o,t}^a \right).
\]
Oil production in o

- Government-run oil company produces oil using non-oil good

- Portion of oil sold domestically at subsidized price P_s (set by modeler)

- Remainder exported to country a at world price P_o
Oil production in \(o \)

Oil producer problem:

\[
\max_{Y_{o,t}} \Pi^o_t = P_{o,t}(Y_{o,t}^o - O_{c,t}^o) + P_{s,t} O_{c,t}^o - X_{o,t}^o
\]

(16)

where the cost function is similar to country a’s:

\[
X_{o,t}^o = \kappa_o \frac{(Y_{o,t}^o)^{1+\frac{1}{\eta_o}}}{1 + \frac{1}{\eta_o}}.
\]

(17)
Oil production in oil

- Oil revenues transferred to government
- Government budget constraint

\[P_t^o (Y_o^o - O_{c,t}^o) + P_s^o O_{c,t}^o - X_{o,t}^o = T_t. \] \hspace{1cm} (18)

- Revenues enter the economy in non-distortionary manner
Household in o

Household maximizes lifetime utility

$$E_0 \sum_{t=0}^{\infty} \beta^t \frac{(C_o^t)^{1-\sigma}}{1-\sigma},$$ \hfill (19)

with

$$C_o^t = \left[(1 - \gamma_o^o)A_{c,t}^{1-\mu_c} + (\gamma_o^o)O_{c,t}^{1-\mu_c}\right]^{\frac{1}{1-\mu_c}},$$ \hfill (20)

and subject to the budget constraint

$$A_{c,t}^o + P_{s,t}O_{c,t}^o = T_t.$$ \hfill (21)
Calibration

Table: Oil market variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil production in o</td>
<td>48 percent of world production</td>
</tr>
<tr>
<td>Consumption of fuel in o</td>
<td>13.5 percent of world consumption</td>
</tr>
<tr>
<td>Ratio of subsidized fuel price to world price</td>
<td>.35</td>
</tr>
<tr>
<td>Consumption-expenditure share of fuel in a</td>
<td>5 percent</td>
</tr>
<tr>
<td>Firm use of oil in a</td>
<td>2 percent of a’s GDP</td>
</tr>
<tr>
<td>Elasticity of oil supply (η_a, η_o)</td>
<td>.30</td>
</tr>
<tr>
<td>Elasticities of oil demand</td>
<td>.75</td>
</tr>
</tbody>
</table>
Exercise

- Model calibrated to recent data
- Policy experiment: Set subsidized price in o equal world price
 - Subsidies removed in all 24 countries
- Comparative statics exercise
- Calculate how variables change across steady states
Results

Percent change in variables across steady states

Prices
- market oil price \((P_o) \) -6.2
- subsidized oil price \((P_s) \) 176
Results

Percent change in variables across steady states

Prices
- market oil price (P_o): -6.2
- subsidized oil price (P_s): 176

Country o variables
- oil production (Y_o): -1.9
- oil consumption (O_c): -45.9
- consumption of good A (A_c): 15.8
- transfers (T) / Revenues: 21.4
Results

Percent change in variables across steady states

Prices
- Market oil price (P_o) -6.2
- Subsidized oil price (P_s) 176

Country o variables
- Oil production (Y_o^o) -1.9
- Oil consumption (O_c^o) -45.9
- Consumption of good A (A_c^o) 15.8
- Transfers (T) / Revenues 21.4

Country a variables
- Oil production (Y_o^a) -1.9
- Oil used in consumption (O_c^a) 4.9
- Oil used in production (O_y^a) 4.2
- Consumption of good A (A_c^a) 0.004
- Non-oil GDP 0.23
Welfare Results

- Welfare changes converted to (aggregate) consumption equivalents
- How much do I need to change consumption in the new steady state to get utilities equal?
Welfare Results

- Welfare changes converted to (aggregate) consumption equivalents
 - How much do I need to change consumption in the new steady state to get utilities equal?

- Importer’s welfare gain: 0.2% of consumption
Welfare Results

- Welfare changes converted to (aggregate) consumption equivalents
 - How much do I need to change consumption in the new steady state to get utilities equal?

- Importer’s welfare gain: 0.2% of consumption

- Exporter’s welfare gain: 0.9% of consumption
Welfare Results

- Welfare changes converted to (aggregate) consumption equivalents
 - How much do I need to change consumption in the new steady state to get utilities equal?

- Importer’s welfare gain: 0.2% of consumption

- Exporter’s welfare gain: 0.9% of consumption

- Larger relative gains to exporter, larger absolute in importer
Table: Results for different elasticities of supply

<table>
<thead>
<tr>
<th>Variables</th>
<th>η^a = η^o = 0.3 (Baseline)</th>
<th>η^a = 0.3; η^o = 0.6 (Alternative 1)</th>
<th>η^a = 0.3; η^o = 1.0 (Alternative 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>market oil price (P_o)</td>
<td>-6.2</td>
<td>-5.08</td>
<td>-3.89</td>
</tr>
<tr>
<td>subsidized oil price (P_s)</td>
<td>176</td>
<td>179</td>
<td>183</td>
</tr>
<tr>
<td>Country o variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oil production (Y_o^o)</td>
<td>-1.9</td>
<td>-3.08</td>
<td>-3.89</td>
</tr>
<tr>
<td>oil consumption (O_c^o)</td>
<td>-45.9</td>
<td>-43.0</td>
<td>-38.2</td>
</tr>
<tr>
<td>consumption of good A (A_c^o)</td>
<td>15.8</td>
<td>23.03</td>
<td>34.75</td>
</tr>
<tr>
<td>transfers (T) / Revenues</td>
<td>21.4</td>
<td>30.87</td>
<td>46.91</td>
</tr>
<tr>
<td>welfare</td>
<td>0.86</td>
<td>2.18</td>
<td>3.83</td>
</tr>
<tr>
<td>Country a variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oil production (Y_a^a)</td>
<td>-1.9</td>
<td>-1.55</td>
<td>-1.18</td>
</tr>
<tr>
<td>oil used in consumption (O_c^a)</td>
<td>4.9</td>
<td>3.98</td>
<td>3.02</td>
</tr>
<tr>
<td>oil used in production (O_y^a)</td>
<td>4.2</td>
<td>4.25</td>
<td>3.21</td>
</tr>
<tr>
<td>consumption of good A (A_c^a)</td>
<td>0.004</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>non-oil GDP</td>
<td>0.23</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>welfare</td>
<td>0.23</td>
<td>0.19</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Conclusions

- Considered impacts of fuel subsidies in a two-country model
- Calibrated model to match recent data
- Removing subsidies would lower world price of oil by about 6%
- Welfare improves in both countries
Table: Statistics about the 24 countries

<table>
<thead>
<tr>
<th>Year</th>
<th>Share of world oil consumption</th>
<th>Share of world oil production</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>9.5</td>
<td>46.1</td>
</tr>
<tr>
<td>1993</td>
<td>9.9</td>
<td>47.3</td>
</tr>
<tr>
<td>1994</td>
<td>10.0</td>
<td>47.6</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>13.1</td>
<td>48.3</td>
</tr>
<tr>
<td>2011</td>
<td>13.4</td>
<td>48.1</td>
</tr>
<tr>
<td>2012</td>
<td>13.5</td>
<td>47.9</td>
</tr>
</tbody>
</table>

Sources: IMF, EIA