Common Factors in Commodity Futures Curves

Dennis Karstanje Michel van der Wel Dick van Dijk

Erasmus University Rotterdam

CAMP workshop on Commodity Price Dynamics and Financialization
June 25, 2014
Main research question

Are there common factors in commodity futures curves?

Karstanje, van der Wel, van Dijk (EUR)
Common Factors in Commodity Curves
CAMP workshop 2014
Main research question: Are there common factors in commodity futures curves?

Challenge: Large, highly unbalanced panel data set

Solution: Use Nelson-Siegel type model to specify futures curves in terms of level, slope and curvature factors, which are decomposed into market, sector, and individual components.

Finding: There is comovement in commodity futures curves’ factors:
 ▶ For level factors, more than 70% of the variation can be explained by a market-wide common component
 ▶ For slope and curvature factors, around 60% of the variation can be explained by (mostly sector) common components
Motivation

Why investigate comovement of commodity futures curves?

- Commodities are major input of industrial sector, comovement in prices affects economy as a whole
- Price comovement has effect on hedging decisions
- Comovement will affect risk management and dependencies should be accounted for
- Futures trading strategies and speculation
- Due to ‘financialization’ of commodity futures markets, prices may have become more closely linked
Contributions and Related Literature

First to include three dimensions: time series, cross-sectional, and term-structure.

- Model futures curve of single, individual commodity (time-series and term-structure)
 Gibson and Schwartz (1990); Schwartz (1997)

- Investigate differences and similarities across commodities (time-series and cross-section)
 Excess comovement hypothesis: Pindyck and Rotemberg (1990); Deb, Trivedi, and Varangis (1996)
 Common unobserved factors: Vansteenkiste (2009); Byrne, Fazio, and Fiess (2012)
Contributions and Related Literature

Methodological improvements to account for commodity specific features

- **Seasonality**
 Milonas (1991); Sorensen (2002); West (2012)

- **Global yield and business cycle models**
 Government bonds: Diebold, Li, and Yue (2008)
Our Approach

Nelson-Siegel type model for log futures price of commodity \(i \) with maturity \(\tau \) at time \(t \):

\[
f_{i,t}(\tau) = l_{i,t} + s_{i,t} \left(\frac{1 - \exp^{-\lambda_i \tau}}{\lambda_i \tau} \right) \\
+ c_{i,t} \left(\frac{1 - \exp^{-\lambda_i \tau}}{\lambda_i \tau} - \exp^{-\lambda_i \tau} \right) \\
+ \kappa_i \cos(\omega g_i(t, \tau) - \omega \theta_i) \\
+ \nu_{i,t}(\tau),
\]

typically combined with a VAR(1) for the level, slope and curvature factors \(l_{i,t}, s_{i,t}, \) and \(c_{i,t} \) (Nelson and Siegel (1987); Diebold and Li (2006))
Our Approach

We want to examine the comovement in $l_{i,t}$, $s_{i,t}$, and $c_{i,t}$ across commodities

\Rightarrow Split each factor into market, sector, and idiosyncratic components:

$$l_{i,t} = \alpha^L_i + \beta^L_i L_{\text{market},t} + \gamma^L_i L_{\text{sector},t} + L_{\text{idio},t},$$

$$s_{i,t} = \alpha^S_i + \beta^S_i S_{\text{market},t} + \gamma^S_i S_{\text{sector},t} + S_{\text{idio},t},$$

$$c_{i,t} = \alpha^C_i + \beta^C_i C_{\text{market},t} + \gamma^C_i C_{\text{sector},t} + C_{\text{idio},t},$$

where these components are modeled by three separate VARs:

$$
\begin{pmatrix}
L_{x,t} \\
S_{x,t} \\
C_{x,t}
\end{pmatrix} =
\begin{pmatrix}
\phi^{x}_{11} & \phi^{x}_{12} & \phi^{x}_{13} \\
\phi^{x}_{21} & \phi^{x}_{22} & \phi^{x}_{23} \\
\phi^{x}_{31} & \phi^{x}_{32} & \phi^{x}_{33}
\end{pmatrix}
\begin{pmatrix}
L_{x,t-1} \\
S_{x,t-1} \\
C_{x,t-1}
\end{pmatrix} +
\begin{pmatrix}
\eta^L_{x,t} \\
\eta^S_{x,t} \\
\eta^C_{x,t}
\end{pmatrix}.
$$
Estimation

- **Two-step approach**
 1. Extract unobserved factors from all curves
 2. Investigate comovement in these factors
 - Estimation is easier since it is done in parts
 - Estimation error first step is not taken into account in second step

- **One-step approach**
 Alternatively, we could cast the model in state space form and estimate everything at once
 - Can use both time series and term-structure info to estimate parameters
 - The model contains a large number of parameters

Highly nonbalanced panel dataset > multivariate to univariate approach

LISA server of SURFsara
State Space Representation - Measurement Eq.

\[
\begin{pmatrix}
 f_1, t(\tau_1) \\
 f_1, t(\tau_2) \\
 \vdots \\
 f_1, t(\tau_{J_1}) \\
 \vdots \\
 f_N, t(\tau_{J_N})
\end{pmatrix}
= \begin{pmatrix}
 \alpha_1^L \\
 \alpha_1^S \\
 \alpha_1^C \\
 \vdots \\
 \alpha_N^C
\end{pmatrix}
+ \begin{pmatrix}
 L_{\text{market}, t} \\
 S_{\text{market}, t} \\
 C_{\text{market}, t}
\end{pmatrix}
+ \begin{pmatrix}
 L_{\text{Energy}, t} \\
 S_{\text{Energy}, t} \\
 C_{\text{Energy}, t} \\
 \vdots \\
 L_{\text{Meats}, t} \\
 S_{\text{Meats}, t} \\
 C_{\text{Meats}, t}
\end{pmatrix}
+ \begin{pmatrix}
 L_{1, t} \\
 S_{1, t} \\
 C_{1, t} \\
 \vdots \\
 C_{N, t}
\end{pmatrix}
+ \begin{pmatrix}
 \nu_1, t(\tau_1) \\
 \nu_1, t(\tau_2) \\
 \vdots \\
 \nu_1, t(\tau_{J_1}) \\
 \vdots \\
 \nu_N, t(\tau_{J_N})
\end{pmatrix}
+ \begin{pmatrix}
 \kappa_1 \\
 \kappa_2 \\
 \vdots \\
 \kappa_N
\end{pmatrix}
\]
Alternative Approaches

- Non-stationary level factors

\[\Delta L_{x,t} = \delta \Delta L_{x,t-1} + \eta_{x,t} \]

\(x = [\text{market-wide, sector}] \)

- Adjustment of Nelson-Siegel loadings

\[s_{i,t}^* \left[\left(\frac{1 - \exp^{-\lambda_i \tau}}{\lambda_i \tau} \right) - \left(\frac{1 - \exp^{-\lambda_i}}{\lambda_i} \right) \right] \]

\[c_{i,t}^* \left[\left(\frac{1 - \exp^{-\lambda_i \tau}}{\lambda_i \tau} - \exp^{-\lambda_i \tau} \right) - \left(\frac{1 - \exp^{-\lambda_i}}{\lambda_i} - \exp^{-\lambda_i} \right) \right] \]
Alternative Approaches

- Non-stationary level factors

\[\Delta L_{x,t} = \delta \Delta L_{x,t-1} + \eta_{x,t} \]

\[x = [\text{market-wide}, \text{sector}] \]

- Adjustment of Nelson-Siegel loadings

\[s_{i,t}^* \left[\left(\frac{1 - \exp^{-\lambda_i \tau}}{\lambda_i \tau} \right) - \left(\frac{1 - \exp^{-\lambda_i}}{\lambda_i} \right) \right] \]

\[c_{i,t}^* \left[\left(\frac{1 - \exp^{-\lambda_i \tau}}{\lambda_i \tau} - \exp^{-\lambda_i \tau} \right) - \left(\frac{1 - \exp^{-\lambda_i}}{\lambda_i} - \exp^{-\lambda_i} \right) \right] \]
Data

- 24 commodities (all constituents of the S&P GSCI)
- Monthly futures prices; Jan 1995 - Sept 2012

<table>
<thead>
<tr>
<th>Energy</th>
<th>Metals</th>
<th>Softs</th>
<th>Grains</th>
<th>Meats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brent crude oil</td>
<td>Gold</td>
<td>Cocoa</td>
<td>Corn</td>
<td>Feeder cattle</td>
</tr>
<tr>
<td>WTI crude oil</td>
<td>Silver</td>
<td>Coffee</td>
<td>Soybeans</td>
<td>Lean hogs</td>
</tr>
<tr>
<td>Gasoil</td>
<td>Aluminum</td>
<td>Cotton</td>
<td>C. wheat</td>
<td>Live cattle</td>
</tr>
<tr>
<td>Heating oil</td>
<td>Copper</td>
<td>Sugar</td>
<td>K. wheat</td>
<td></td>
</tr>
<tr>
<td>Natural gas</td>
<td>Lead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coffee

Karstanje, van der Wel, van Dijk (EUR)
Common Factors in Commodity Curves
CAMP workshop 2014
Model fit

- Fitted values versus observed prices:
 - All average percentage pricing errors are below 0.25%
 - The largest percentage pricing error is less than 5%

- Unobserved factors versus Schwartz (1997) factors

- Unobserved factors versus Principal Component Analysis
Extracted level factors - Energy

Karstanje, van der Wel, van Dijk (EUR)
Extracted level factors - Softs

Karstanje, van der Wel, van Dijk (EUR) Common Factors in Commodity Curves CAMP workshop 2014 19 / 24
Extracted slope factors - Energy

Karstanje, van der Wel, van Dijk (EUR)
Common Factors in Commodity Curves
CAMP workshop 2014
Variance decompositions

<table>
<thead>
<tr>
<th>Commodity</th>
<th>slope</th>
<th>idio</th>
<th>curvature</th>
<th>idio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>13%</td>
<td>61%</td>
<td>26%</td>
<td>25%</td>
</tr>
<tr>
<td>Brent crude oil</td>
<td>0%</td>
<td>90%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>WTI crude oil</td>
<td>0%</td>
<td>90%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>Gasoil</td>
<td>0%</td>
<td>88%</td>
<td>11%</td>
<td>46%</td>
</tr>
<tr>
<td>Heating oil</td>
<td>1%</td>
<td>82%</td>
<td>17%</td>
<td>81%</td>
</tr>
<tr>
<td>Natural gas</td>
<td>0%</td>
<td>30%</td>
<td>70%</td>
<td>52%</td>
</tr>
<tr>
<td>Gasoline (RBOB)</td>
<td>2%</td>
<td>79%</td>
<td>19%</td>
<td>52%</td>
</tr>
<tr>
<td>Gold</td>
<td>8%</td>
<td>67%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>5%</td>
<td>62%</td>
<td>34%</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>0%</td>
<td>92%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0%</td>
<td>96%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>3%</td>
<td>83%</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>1%</td>
<td>97%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0%</td>
<td>97%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Cocoa</td>
<td>1%</td>
<td>73%</td>
<td>26%</td>
<td>4%</td>
</tr>
<tr>
<td>Coffee</td>
<td>13%</td>
<td>67%</td>
<td>20%</td>
<td>1%</td>
</tr>
<tr>
<td>Cotton</td>
<td>7%</td>
<td>20%</td>
<td>73%</td>
<td>8%</td>
</tr>
<tr>
<td>Sugar</td>
<td>11%</td>
<td>2%</td>
<td>87%</td>
<td>73%</td>
</tr>
<tr>
<td>Corn</td>
<td>67%</td>
<td>5%</td>
<td>28%</td>
<td>3%</td>
</tr>
<tr>
<td>Soybeans</td>
<td>62%</td>
<td>0%</td>
<td>38%</td>
<td>28%</td>
</tr>
<tr>
<td>Chicago wheat</td>
<td>33%</td>
<td>60%</td>
<td>7%</td>
<td>29%</td>
</tr>
<tr>
<td>Kansas wheat</td>
<td>19%</td>
<td>69%</td>
<td>12%</td>
<td>35%</td>
</tr>
<tr>
<td>Feeder cattle</td>
<td>5%</td>
<td>48%</td>
<td>47%</td>
<td>5%</td>
</tr>
<tr>
<td>Lean hogs</td>
<td>57%</td>
<td>4%</td>
<td>39%</td>
<td>1%</td>
</tr>
<tr>
<td>Live cattle</td>
<td>2%</td>
<td>68%</td>
<td>30%</td>
<td>13%</td>
</tr>
</tbody>
</table>

Karstanje, van der Wel, van Dijk (EUR)

Common Factors in Commodity Curves

CAMP workshop 2014
One-step model - Market-wide components

Karstanje, van der Wel, van Dijk (EUR)

Common Factors in Commodity Curves

CAMP workshop 2014
Market-wide Level and Macroeconomic Variables

Karstanje, van der Wel, van Dijk (EUR)

Common Factors in Commodity Curves

CAMP workshop 2014
Summary

Do commodity futures curves comove?

- We add a third dimension to incorporate term-structure information.
- We reduce the dimension using an enhanced version of the Nelson-Siegel model.
- We investigate if the extracted level, slope, and curvature factors are mostly driven by market, sector specific, or idiosyncratic components.
- Our results indicate that there is comovement in common factors of commodity futures curves, mostly due to sector components.
Possible extension - Rolling PCA level