Electoral agency in the lab: Learning to throw out the rascals*

Leif Helland† & Lars Monkerud ‡

November 18, 2009

Abstract

Models of electoral agency address the amount of discipline and selection that can be achieved by voters in elections. The models are demanding in terms of individual belief-formation and consistency of behavior. We investigate a baseline model of electoral agency in a controlled laboratory environment. This baseline model, although simple, form the core of more complex electoral agency models. Our design seeks to limit the behavioral impact of social preferences. We find little support for the baseline model in our data. However, simple (non-rational) learning rules explain behavioral patterns well. Simulations indicate that non-rational learning pushes behavior most forcefully towards equilibrium in situations that are favorable to bayesian updating.

The NSM has generously financed the project. We thank participants at the Oslo Seminar in Behavioral and Experimental Economics 07.11.08, and the 3rd Nordic Conference on Behavioral and Experimental Economics 14. - 15.11.08 for useful comments.

†Norwegian School of Management, Nydalsveien 37, 0442, Oslo; leif.helland@bi.no.
‡Norwegian School of Management, Nydalsveien 37, 0442, Oslo; lars.monkerud@bi.no (corresponding author).
Introduction

In representative democracies an option is for voters to condition reelection on the observed performance of incumbents. Regular access to elections allow voters to "throw out the rascals" peacefully. Arguably this is the defining characteristic of democratic government (Hayek 1979:137, Riker 1982, Popper 1989:344, Schumpeter 1942). Identifying conditions that enable voters to retain or replace incumbent rulers in intelligent ways is worthwhile.

Current electoral agency models assign voters the twin tasks of disciplining bad incumbents, and selecting good incumbents (Austen-Smith & Banks 1989, Banks & Sundaram 1993, Besley 2006, Maskin & Tirole 2004).¹ There is a tradeoff between the two; better selection only comes at the cost of weakened discipline and vice versa. This tradeoff places significant demands on voters. Beliefs are required to be consistently updated given observed outcomes, and votes are required to be optimal given such beliefs.

Taken literally, electoral agency models make unrealistic behavioral claims on voters. While figuring out the strategic complexities will carry significant cognitive costs, the expected return of informed voting is at best marginal in realistically sized electorates (Downs 1957, cf. Caplan 2007). In short, voters have weak incentives to behave in rationally informed ways. Politicians, on the other hand stand to win or lose high office, providing them with high powered incentives to acquire relevant information and act rationally on it.

In the article we investigate voter behavior in a simple electoral agency experiment. Our point of departure is the core model of Besley (2006). We are particularly interested in identifying conditions under which less than rational learning rules converges on, or diverges from, the equilibrium of this model.

Our design captures the asymmetric incentives of voters and politicians with regard to making informed choices. In the experiment politicians are automatons, while voters are human subjects.² The automatons are pro-

¹First generation models of electoral agency, such as Barro 1973 and Ferejohn 1986, focus exclusively on discipline, since all politicians are "bad" (in the sense of maximizing a combination of rents and office).

²The use of automatons to represent voters is a common in election experiments. Examples are abundant in the literature on positioning in two candidate contests (where voters are programmed to vote for candidate closest to own ideal point). For an overview see Ordeshook 1997. A more recent examples is found in Aragones & Palfrey (2005), that is commented on below.
grammed to mimic the equilibrium behavior of politicians in the electoral agency model. Thus, we explore the behavior of subjects as voters in a (highly artificial) situation where it is public knowledge that politicians behave in a manner fully consistent with the electoral agency model.

It is well known that systematic deviations from self interested equilibrium are explained by fairness preferences and intentions-based reciprocity in a number of simple games (see Fehr 2009 and Bolton et al. 2009 for reviews). Since such motivations are not part of the agency model we explore, we wish to minimize their behavioral impact. The use of politician-automatons renders intention-based subject-responses unlikely (since a computer program does not have intentions). In addition, since by design there is no payoff variation among voters belonging to the same electorate in our experiments, neither are fairness concerns likely to enter subject decisions. By controlling for fairness preferences and intentions in this way, our design facilitates the exploration of learning rules in an environment where self-regarding voter responses are cultivated. This allows us to draw firmer conclusions about learning in an environment that closely resembles that of the electoral agency model we study.

Various field data tests of electoral agency models exist (Besley, Persson & Stürm 2005, Svensson 1999, Helland & Sørensen 2008, and more indirectly by Alesina, Bakir and Easterly 1999, Easterly and Levine 1997, cfr. Persson & Tabellini 2000:90). Drawing clear-cut causal inferences from these studies is challenging (due to e.g. institutional heterogeneity of polities; measurement problems on key variables; thorny questions of reversed causation; endogeneity; and selection bias). The experimental method allows for more direct control with the central building blocks of agency models (e.g. voter preferences; beliefs; electoral institutions; and incumbency performance), and (partly for this reason) facilitates inferences about causal mechanisms. The price paid is uncertainty with respect to external validity. We share the view that experiments can provide a useful supplement to field data studies, and believe this to be particularly true in the study of electoral agency.

A number of experiments deal with elections. Very few of these address

3 We do not provide information about earnings in other groups. Inequality concerns based on the population of subject, therefore, does not enter either.

4 Beginning in the late 1980s, a number of papers explored convergence towards the median voter in two-candidate majoritarian elections (see Ordeshook 1997 for an overview). From the early 1990s onwards, a series of studies demonstrated that various pre-election signals can help voters eliminate Condorcet losers in three candidate contests under single
agency problems. Markussen & Tyran (2009) use an agency framework to study selection of politicians given two kinds of signals. Discipline is not an issue in their experiment, since there is no reelection. Their experiment is designed to explore the impact of fairness preferences on selection.

Aragones & Palfrey (2005) run a series of experiments on selection of politicians that differ in quality. Their experiment does not depart from an explicit agency framework (but utilizes a variant of the prospective, probabilistic voting model). Elections are not repeated, so issues of discipline does not enter here either.

Dasgupta & Williams (2002) is the study closest to our own, in that they address the twin challenges of discipline and selection. In their setup voters are subdivided into two groups; one group is informed about policy outcomes produced by the current incumbent, and one group not. Informed voters observe outcomes with noise, since outcomes are a function of (randomly drawn) competence and incumbent effort choice. After this noisy signal is transmitted to informed voters, all voters participate in a fixed number of polls. Aggregate polling results are made public knowledge once they are concluded. Voters thereafter either reelect the current incumbent or not. Getting reelected is valuable, and discipline therefore enters as a relevant concern. Selection is also a concern since the incumbent and challenger have different policy preferences and possibly also are of different qualities. Given the sequence of polls, uninformed voters may update by observing the poll results. In the experiment both voters and politicians are human subjects.

Dasgupta & Williams (2002) find that even though the setup is one of incomplete voter information, voters behave as if fully informed in the experiment. There are two reasons for this; informed voters are able to extract information from their noisy signal, and uninformed voters in their turn are able to extract this information from aggregate polls. Two alternative "attention rules" are explored; (a) no learning related to output or polls, and (b) rational learning related to output but no learning related to polls. None of these alternatives explain data as well as the alternative in which voters learn from both sources.

The possibility of voters learning from both polls and observed outcomes, but in other ways than through consistently applying Bayes rule is not consid-

4

5In the manner suggested by McKelvey & Ordeshook (1985).
ered. Our experiment shows that non-rational learning rules may, but need not, converge on a perfect Bayesian equilibrium in an agency setting. This suggests that the results in Dasgupta & Williams (2002) need not necessarily have been produced by the mechanism underlying a rational expectations equilibrium, and that convergence on equilibrium need not happen for other parameters in their experiment. In short, while Dasgupta & Williams (2002) ask if voters learn to play the equilibrium in an agency environment, we ask how and when voters learn to play an equilibrium in such an environment.\footnote{A possible weakness in the Dasgupta & Williams (2002) design is that it makes no attempt to control for social preferences (which we know are forceful drivers of behavior in a large class of other experiments).}

The explanatory force of the electoral agency model we study hinges critically on voters being able to update beliefs in accordance with Bayes rule. An experimental literature addressing individual abilities to perform such updates exists. A main finding is that individuals perform Bayesian calculations significantly better when the problem is presented in terms of frequencies, rather than probabilities (see Gigerenzer et al. 2009 for an overview). To give Bayesian updating a fair chance, therefore, subjects in our experiment were presented with their decision problems in frequency terms. The frequencies versus probability literature, however, focus on one-shot individual decision problems. We explore a richer environment, in which learning takes place in a strategic context.

With Bayesian learning as a point of departure, we check for the explanatory power of two non-rational learning rules: fictitious play learning (Brown 1951) and payoff reinforcement learning (Erev & Roth 1995). Colin Camerer and Teck Ho (1999) demonstrates that fictitious play and payoff reinforcement learning are both special cases of a more general learning model ("experience weighted attraction"). Rather than relying on the somewhat heavily parametrized model of Camerer and Ho, we follow the simpler twin rule approach. This choice is grounded in improved tractability, as well as previous explanatory success of these simpler rules.

We find little support for the electoral agency model in data. However, simple (non-rational) learning rules explain behavioral patterns well. Moreover, simulations indicate that non-rational learning drives behavior most forcefully towards equilibrium in situations that are favorable to Bayesian updating. In situations that are less favorable to Bayesian updating, behavior stabilizes away from equilibrium.
A pertinent question is of course whether foresighted politicians facing non-rational voters would continue to behave as stipulated in the electoral agency model. Departing from our experimental results, we argue that evolutionary pressures limits the extent to which sophisticated politicians can take advantage of non-rational voters.

The paper is organized as follows: The model is presented in the next section. Thereafter the design is outlined. Results are then discussed in some detail. Limits on sophisticated politicians are discussed prior to a brief conclusion. A sample of instructions are provided in the appendix.

Model

Write individual utility as \(w_t = (1 - \tau)y + \alpha x_t \), were \(y \) is pre tax income, \(\tau \) an endogenously given tax rate, \(x_t \) public output in stage \(t \in \{1, 2\} \), and \(\alpha > 1 \).

The public budget is required to balance in each stage, so that \(\theta \left(\tau y - r_t \right) = x_t \). In the budget restriction \(\theta \in \{s, 1\}, 0 < s < 1 \) is a persistent productivity shock, and \(0 < r_t \leq R \leq \tau y \) is rent extraction in stage \(t \).\(^7\) It is also required that \(R > (1 - s)\tau y \), as a technical assumption. Productivity is drawn from the distribution \(\Pr(\theta = s) = q \), and \(\Pr(\theta = 1) = (1 - q) \). Only the case with \(q \geq \frac{1}{2} \) is analyzed.\(^8\)

Let there be two types of politicians \(\iota \in \{g, b\} \), referred to as "good" and "bad" respectively. The types have objective functions \(v_g = w_1 + \delta w_2 \) and \(v_b = r_1 + \delta r_2 \), where \(\delta < 1 \) is a common discount factor. Let the prior distribution of types be given by \(\Pr(\iota = g) = \pi \), and \(\Pr(\iota = b) = (1 - \pi) \).

The following time line applies: 1) Incumbent-type and productivity are drawn, and observed by the incumbent only. 2) The incumbent sets rent extraction for stage one. Production is determined residually. 3) Stage one payoffs are distributed, and observed by all players. 4) Elections are held at the end of stage one, in which the current incumbent is kept or replaced by the challenger. If the challenger wins, he observes the productivity draw from the first stage, and his type is drawn and observed by him only. 5) The (re) elected politician sets rent extraction for stage two. 6) Stage two payoffs are distributed and the game ends.

\(^7\)Persistent in the sense that it persist through the election.

\(^8\)This eliminates a hybrid equilibrium, in which voters and incumbents randomize over pure actions.
It is immediate that in stage two (the last stage), a bad politician extracts maximal rents while a good politician extracts zero rents. Since good politicians never steal, they will either produce \(x_1 = \tau y \) or \(x_1 = s\tau y \), depending on the realization of the productivity draw. For any other level of production, it must be the case that \(\Pr(g|x_1) = 0 \). Since future rents are discounted, \(r_1 = R \) dominates \(r_1 = 0 \) for a bad politician (irrespective of productivity \(r_1 = R \) pays \((1 + \delta)R\) if reelected and \(R \) if not, while \(r_1 = 0 \) pays \(\delta R \) if reelected and 0 if not).

A bad politician facing \(\theta = 1 \) may nevertheless find it worthwhile to mimic a good politician facing \(\theta = s \). This will net the bad politician \(r_1 = (1 - s)\tau y \), in addition to \(\delta R \) if he is reelected. Denote the probability that a bad politician extracts \(r_1 = (1 - s)\tau y \) by \(\lambda \).

Attention is limited to the use of pure cut-off strategies by the voters. Such a strategy instructs the voter to reelect if and only if the updated belief of the current incumbent being good is at least as high as the probability of the challenger being good. The voter’s updated belief of having a good incumbent after observing \(x_1 = s\tau y \) follows from Bayes rule:

\[
\Pi = \frac{q\pi}{q\pi + (1 - q)(1 - \pi)\lambda}
\] (1)

After observing \(x_1 = s\tau y \) the voter follows his pure cut-off strategy and reelects if and only if \(\Pi \geq \pi \), or equivalently if and only if \(\lambda \leq \frac{q}{(1 - q)} \). Thus, for \(q \geq \frac{1}{2} \) (which is the case analyzed), reelection is certain after \(x_1 = s\tau y \) has been observed. Let \(0 < \rho < 1 \) signify the probability that the incumbent is reelected.

It is easy to see that a separating equilibrium (with \(\rho = 1 \) and \(\lambda = 0 \)) exists if \(\tau y(1 - s) + \delta R < R \), and that a pooling equilibrium (with \(\rho = \lambda = 1 \)) exists if \(\tau y(1 - s) + \delta R \geq R \).

Design

In all sessions of the experiment the following parameters where held constant: \(s = 0.5 \) ("low productivity draw"); \(y = 100 \) schillings ("endowment per stage"); \(\tau = 0.5 \) ("tax rate"); \(\alpha = 1.1 \) ("marginal value of public production"); \(\pi = 0.2 \) ("a priori probability of a good politician").

Sessions were conducted with electorate size 1 ("decisive voter") and 3 ("deciding by simple majority"), to check for learning effects due to group
decision making (which should be nil according to the model), and differences with respect to electorate size (which should also be nil according to the model).

For each electorate size sessions with marginal updating in which $q = 0.55 \Rightarrow (\Pi - \pi) = 0.03$, and a sessions with substantial updating in which $q = 0.85 \Rightarrow (\Pi - \pi) = 0.39$ were executed. The idea was to check whether equilibrium behavior requires substantial updating. In each game, after observing first stage production, subjects were required to register their subjective probability assessment that the first stage politician was bad. Within each session subjects were informed that the minimal absolute deviation between registered beliefs and actual draws would win a price of 500 NOK (and that a fair lottery would pick a winner in case of a non-unique minimum).

Incumbent behavior was programmed in the computer (rather than having voters face humans in the role of politicians). The programmed behavior was as follows: If good type and $\theta = 1$, allocate 50 schillings to public production in both stages; if good type and $\theta = 0.5$ allocate 25 schillings to public production in both stages; if bad type and $\theta = 1$ allocate 25 schillings to public production in stage one and nothing in stage two; if bad type and $\theta = 0.5$ allocate nothing to public production in either stage.

In the 3 subject electorates an absolute stranger design was employed (in which no subject was matched with subjects that this subject had been matched with in previous games). This imposed a limit on the number of feasible repetitions with the 3 subject electorates, which is 7. With 1 subject electorates no such limit is imposed, and this allows for more repetitions to check whether behavior settles down over time. In sessions with 1 subject electorates therefore 20 repetitions of the game was conducted. The design is summarized in table 1.

Two desiderata in the design was to: a) root out social preferences, and b) produce statistically independent observations. Since incumbents are machines, not humans, there is no sense in punishing or rewarding past behavior. In sessions 1 and 2 every electorate is unique due to an absolute stranger design. There is no sense in trying to punish or reward other subjects for previous play, since this can not possibly have any disciplining effects that the subject benefits from (he or she does not meet the punished or rewarded subject again). In sessions 1 and 2 majority decision ensures that all subjects in the same electorate earn the same amount in a specific game. Thus, no subject belonging to the same electorate is ever ahead or behind any other subject. In the decisive voter treatments (session 3 and 4) no information on
other subjects earnings was made available. Thus, social preferences based on inequality aversion (or more generally, preferences for final earnings distributions) should have no effect in the experiment. Due to the use of an absolute stranger design in sessions 1 and 2 one may also be confident that observations of electorates are statistically independent.

The experiment was programmed in z-tree (Fischbacher 1999). After subjects had entered the lab, instructions were read out loud (to ensure public knowledge of the structure of the interaction). Each session started with two non-paying test games to familiarize subjects with the game and the screens. All communication between subjects during the experiment took place through the computers. After concluding a session, subjects left the lab one at a time and received their earnings.

The experimental "schillings" were converted at a fixed rate to NOK at the conclusion of the experiment, and the subjects were paid their earnings in cash. There was no show up fee, and the average pay over all treatments was 207 NOK. A session lasted on average 45 minutes, so the average pay is slightly above the going optional hourly wage of a typical BA student.

In equilibrium voters should oust first stage incumbents that do not allocate tax revenues to public production, and (given the update) should keep first stage incumbents that do allocate tax revenues to public production. Behaviorally, one should expect voters to be quite good at keeping incumbents

\[\Delta \Pi = 0.03 \]

\[\Delta \Pi = 0.39 \]

\[\Delta \Pi = 0.03 \]

\[\Delta \Pi = 0.39 \]

Table 1: Design.

<table>
<thead>
<tr>
<th></th>
<th>Session 1</th>
<th>Session 2</th>
<th>Session 3</th>
<th>Session 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>26.11.07</td>
<td>27.11.07</td>
<td>26.10.08</td>
<td>29.10.08</td>
</tr>
<tr>
<td>Electorate size</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Number of subjects</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Updating</td>
<td>Marginal</td>
<td>Substantial</td>
<td>Marginal</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td>$\Delta \Pi = 0.03$</td>
<td>$\Delta \Pi = 0.39$</td>
<td>$\Delta \Pi = 0.03$</td>
<td>$\Delta \Pi = 0.39$</td>
</tr>
<tr>
<td>Matching</td>
<td>Absolute stranger</td>
<td>Absolute stranger</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>Number of games played</td>
<td>7</td>
<td>7</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

9 The exchange was reduced in long sessions, to produce an expected pay of 200 NOK in all sessions.
after observing 50 schillings of first stage public production, and to throw incumbents after observing 0 schillings of first stage production. The case of a first stage production equal to 25 schillings could either be due to a good incumbent facing a low productivity draw, or to a bad incumbent facing a high productivity draw (and mimicking a good incumbent). The conjecture is that the size of the update will determine the extent to which voters keep the incumbent when first stage production was 25 schillings. One should also expect voters to approach equilibrium over time, possibly through non-rational forms of learning. In particular it is conjectured that non-rational forms of learning will have greater impact on behavior for marginal updates than for substantial updates. Lastly, decisions made by subjects in electorates are expected to be closer to equilibrium, than decisions made by subjects operating as decisive voters. Electorates provide a richer learning environment, in which subjects may correct their behavior based on observing whether they were in the minority or not.

Results

Results are presented in four sections. First some descriptive statistics is provided. This is followed by non-parametric tests for the effects of learning in groups versus learning alone, and for the effects of playing early games versus late games. Thirdly, a set of regressions that evaluate the effects of two non-rational learning rules; fictitious play and simple payoff reinforcement is presented. Lastly the effects of payoff reinforcement learning in the experiment is explored by running some simulations.

Descriptive statistics

Due to the stochastic nature of the game, the distribution of first stage production is not balanced. Table 2 shows how observations are distributed on treatments and first stage production (denoted by P1=0, P1=25 and P1=50 respectively). Note also that, depending on treatments, the fraction of decisions that are out of equilibrium varies between 28 percent and 20 percent in the data. While larger update results in more equilibrium behavior for decisive voters, the opposite is the case for voters in electorates.
Rational learning and group learning

Start by looking at the effects of update-size for decisive voters, and for voters in electorates. The relevant data are displayed in figure 1.

[Figure 1 about here]

The bars show the fraction of decisive voters and the fraction of voters in electorates, that decided to keep the incumbent, contingent on first stage production. Due to few observations at first stage production level equal to 50 the patterns in this state is not commented on.

When P1=25, decisive voters generally keep more incumbents than voters in electorates. This holds for both marginal update (12 percentage points difference) and substantial update (15 percentage points difference). However, none of these differences are statistically different from zero in a two sided Mann-Whitney U-test (z=-1.12, p>0.26 for marginal update; z=-1.36, p>0.17 for substantial update).

In both group treatments (decisive voters versus electorates) increasing the update (from marginal to substantial) increases the fraction of incumbents that are kept at P1=25. In the treatment with decisive voters the increase is 17 percentage points, against 14 percentage points in the treatment with electorates. However, only the former difference is statistically different from zero in a two sided Mann-Whitney U-test (z=1.68, p>0.09 for decisive voters; z=-1.17, p>0.24 for electorates).

On the other hand, decisive voters are significantly worse at ousting incumbents that P1=0, than voters operating in electorates. This holds for

Table 2: Descriptive statistics.

<table>
<thead>
<tr>
<th></th>
<th>Session 1</th>
<th>Session 2</th>
<th>Session 3</th>
<th>Session 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1=0</td>
<td>72</td>
<td>90</td>
<td>190</td>
<td>272</td>
</tr>
<tr>
<td>P1=25</td>
<td>36</td>
<td>36</td>
<td>182</td>
<td>115</td>
</tr>
<tr>
<td>P1=50</td>
<td>18</td>
<td>0</td>
<td>28</td>
<td>13</td>
</tr>
<tr>
<td>Share of</td>
<td>.80</td>
<td>.75</td>
<td>.72</td>
<td>.75</td>
</tr>
</tbody>
</table>

10 Results remains qualitatively similar if we instead analyze average voting decisions of subjects.
both marginal and substantial update ($z=1.98$, $p>0.05$ for marginal update; $z=-3.28$, $p>0.000$ for substantial update).

Turn now to the effects of update-size in early versus late games. The analysis is confined to voting decisions of decisive voters, since a greater number of games was played in this group treatment. The relevant data are displayed in figure 2.

[Figure 2 about here]

Focus on voting contingent on having observed $P1=25$. The difference between substantial and marginal update in the first five games is 0.24, compared to 0.26 in the five last games. These differences are significant in both cases ($z=1.89$, $p>0.06$ first five games; $z=2.48$, $p>0.01$ last five games).

Consider now learning effects. The difference in votes to keep the incumbent between the last five and the first five games is 8 percentage points when update is marginal, and 14 percentage points when update is substantial. None of these movements towards equilibrium, however, is significantly different from zero ($z=-0.73$, $p>0.46$ for marginal update; $z=-1.20$, $p>0.23$ for substantial update).

It is also evident from figure 2 that more incumbents are ousted after $P1=0$ in the last five games (for both marginal and substantial update), than in the first five games. This pattern is significantly different from zero at conventional levels ($z=1.77$, $p>0.08$ for marginal update; $z=-2.60$, $p>0.01$ for substantial update).

All in all, these non-parametric tests indicate that allowing for substantial updating facilitates movement towards equilibrium, but not a whole lot, and not always in statistically significant ways. Secondly, being a part of an electorate does not seem to induce group learning that improves the ability to make equilibrium choices. Thirdly, the learning effects of decisive voters are modest, and not significantly different from zero at conventional levels.

Table 3 display the absolute deviance between registered beliefs and equilibrium beliefs, contingent on update size, first stage production, and group treatment. As can be seen the differences between decisive voters and voters in electorates are small for $P1=25$. The average deviation between registered beliefs and equilibrium beliefs, however, is quite large for this production level. For decisive voters average mistakes at $P1=25$ increases when going from marginal to substantial update. For voters in electorates the opposite is the case. As can be seen the first effect is not significantly different from
zero in a two sided test, while the last one is. For observed P1=0, average mistakes are smaller. However, these mistakes increases with the size of the update for both decisive voters and voters in electorates, and the differences are significantly different from zero at conventional levels. All in all, the pattern of registered beliefs seriously challenges the conjecture that subjects form beliefs in accordance with the perfect Bayesian equilibrium of the electoral agency model. It also challenges the conjecture that bayesian belief formation is more pronounced when observations give rise to substantial updates.

<table>
<thead>
<tr>
<th></th>
<th>Substantial update</th>
<th>Marginal update</th>
<th>MW U-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1=00</td>
<td>12.1</td>
<td>8.3</td>
<td>z=-2.56, p>0.01</td>
</tr>
<tr>
<td>P1=25</td>
<td>25.9</td>
<td>28.6</td>
<td>z=0.02, p>0.99</td>
</tr>
<tr>
<td>P1=50</td>
<td>30.4</td>
<td>37.5</td>
<td>z=0.53, p>0.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Substantial update</th>
<th>Marginal update</th>
<th>MW U-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1=00</td>
<td>11.3</td>
<td>1.0</td>
<td>z=-4.65, p>0.00</td>
</tr>
<tr>
<td>P1=25</td>
<td>25.0</td>
<td>23.4</td>
<td>z=-1.61, p>0.11</td>
</tr>
<tr>
<td>P1=50</td>
<td>-</td>
<td>27.2</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Absolute deviations between registered beliefs and equilibrium beliefs. Averaged over registered beliefs

Can behavior based on payoff reinforcements and fictitious play updating help us understand behavior better?

Non-rational learning

The fictitious play update is a continuous variable constructed as follows: The belief that one is facing a good incumbent in game t equals

\[Pr_t(G) = \frac{w_0(G) + w_{t-1}(G)}{w_0(G) + w_{t-1}(G) + w_0(B) + w_{t-1}(B)} \] (2)

Let \(w_0(G) = \pi = 0.2 \) and \(w_0(B) = (1-\pi) = 0.8 \). The following counting
rules are used: i) If P1=50 (0) this counts as a good (bad) incumbent. ii) If P1=25 and the incumbent was reelected, a positive (negative) stage 2 production counts as a good (bad) incumbent. iii) If the incumbent was ousted a positive (negative) stage 2 production counts as a good (bad) incumbent. Note that two counts of a good politician, two counts of a bad politician, or one count of a bad and one count of a good politician, are all possible if the stage 1 incumbent was ousted. Employing these counting rules, the weighting function follows the formula:

\[
 w_t(G) = w_{t-1}(G) + f, f = (1, 2) \]

if conclusive evidence of a good incumbent in game \(t \) was observed, and

\[
 w_t(G) = w_{t-1}(G) + 0 \]

if no such evidence was observed in game \(t \). The weighting function for a bad incumbent \(w_t(B) \) is defined similarly. Now define a dummy variable that takes the value one if fictitious beliefs favors equilibrium actions, and zero otherwise. This dummy is denoted \(d(Fictitious) \).

The payoff reinforcement variable is calculated on state dependent actions. That is; reelecting or throwing the incumbent has numerical attractions that depends on the information set the subject is in. There are six attractions; given by the two possible actions (reelect or oust) in each of the three states (first stage production 0, 25 or 50 respectively). Let \(q_{i,t}(a, s) \) denote the attraction action \(a \) has for player \(i \) at time \(t \), given that the realized state was \(s \). Let the payoff to player \(i \) of choosing action \(a \) in state \(s \) at time \(t \) be \(b \). The attraction of action \(a \) in state \(s \) is updated according to the following rule:

\[
 q_{i,t+1}(a, s) = q_{i,t}(a, s) + b
\]

The probability that player \(i \) chooses action \(a' \) in state \(s \) at time \(t \) is simply

\[
 p_{i,t}(a', s) = \frac{q_{i,t}(a', s)}{\sum_{a \in A} q_{i,t}(a, s)}
\]

To facilitate interpretation of reinforcement towards equilibrium, the variable used is coded as follows: \(\text{Reinforcement} = (p_{i,t}(\text{Keep}, P1 > 0) \text{ and } (1 - p_{i,t}(\text{Keep}, P1 = 0)) \).

The sketched learning rule raises two important questions: How are initial attractions to be determined (i.e. in period \(t=1 \))? At what level should the "strength" of initial attractions be set? The strength of initial attractions is defined as \(\sum_{a \in A} q_{i,t}(a, s) \).

Following Roth & Erev 1995, initial attractions are estimated from data using only the first two games, with the strength of initial attractions set at
the same order of magnitude as the maximal value of periodic production in
the game; that is 55. Table 4 provides the fraction of votes for and against
the incumbent in the two first games, in the three different states. These
correspond to the estimates of (state contingent) initial choice probabilities.
(The initial attractions follow readily from this estimate, and the strength of
attraction).

<table>
<thead>
<tr>
<th>First stage production</th>
<th>P1=00</th>
<th>P1=25</th>
<th>P1=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep incumbent</td>
<td>.167</td>
<td>.481</td>
<td>.600</td>
</tr>
<tr>
<td></td>
<td>(9.19)</td>
<td>(26.46)</td>
<td>(33.00)</td>
</tr>
<tr>
<td>Oust incumbent</td>
<td>.833</td>
<td>.519</td>
<td>.400</td>
</tr>
<tr>
<td></td>
<td>(45.82)</td>
<td>(28.55)</td>
<td>(22.00)</td>
</tr>
</tbody>
</table>

Table 4: Initial choice probabilities (initial attractions).

Table 5 presents a set of logistical regression. The (log odds) that de-
cisions are in equilibrium is estimated. That is: the dependent is a dummy
that takes the value zero if first stage production was zero and the incum-
bent was voted out of office, or if first stage production was positive and
the incumbent was kept. Otherwise the dependent has the value one. As
explanatory variables the following are used: The subjects sex; a dummy
variable \(d(Update)\) that takes the value zero in session 3 (marginal updat-
ing) and one in session 4 (substantial updating); dummy variables for first
stage production equal to 25 \(d(P1 = 25)\) and 50 \(d(P1 = 50)\) respectively;
the dummy that captures fictitious play; the variable that captures reinforce-
ment learning. In addition the production dummies are interacted with the
dummy for sessions \(d(Update)\).\(^{11}\)

The first two models (1a and 1b) do not account for non-rational learning
rules. Results broadly confirms one of the finding in figures 1 and 2. Con-
sider model 1b, were random effects of subjects and game (i.e. time) has been
controlled for. The regression says that going from marginal to substantial
update at P1= 25, drives behavior towards equilibrium. The combined ef-
flect (taking the interactive term in to account) is 0.55, corresponding to an
increase in the probability of keeping the incumbent of 13 percentage points
if sex is set to one (from 52% for marginal update, to 65% for substantial

\(^{11}\)We also ran regressions in which the non-rational belief formation variables where
interacted with the update dummy. Our results are unchanged by this.
<table>
<thead>
<tr>
<th></th>
<th>Model 1a</th>
<th>Model 1b</th>
<th>Model 2a</th>
<th>Model 2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>.13</td>
<td>.12</td>
<td>.13</td>
<td>.11</td>
</tr>
<tr>
<td></td>
<td>(.66)</td>
<td>(.37)</td>
<td>(.63)</td>
<td>(.38)</td>
</tr>
<tr>
<td>d(Update)</td>
<td>-1.12</td>
<td>-1.19</td>
<td>-1.11</td>
<td>-1.14</td>
</tr>
<tr>
<td></td>
<td>(.003)</td>
<td>(.006)</td>
<td>(.003)</td>
<td>(.005)</td>
</tr>
<tr>
<td>d(P1 = 25)</td>
<td>-2.83</td>
<td>-3.07</td>
<td>-1.12</td>
<td>-1.52</td>
</tr>
<tr>
<td></td>
<td>(.000)</td>
<td>(.000)</td>
<td>(.023)</td>
<td>(.003)</td>
</tr>
<tr>
<td>d(P1 = 50)</td>
<td>-2.16</td>
<td>-2.28</td>
<td>-1.14</td>
<td>-1.38</td>
</tr>
<tr>
<td></td>
<td>(.000)</td>
<td>(.000)</td>
<td>(.044)</td>
<td>(.014)</td>
</tr>
<tr>
<td>d(P1 = 25)×d(Update)</td>
<td>1.62</td>
<td>1.74</td>
<td>1.28</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>(.000)</td>
<td>(.000)</td>
<td>(.005)</td>
<td>(.002)</td>
</tr>
<tr>
<td>d(P1 = 50)×d(Update)</td>
<td>2.08</td>
<td>2.26</td>
<td>2.15</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>(.030)</td>
<td>(.017)</td>
<td>(.024)</td>
<td>(.012)</td>
</tr>
<tr>
<td>d(Fictitious)</td>
<td>-</td>
<td>-</td>
<td>.12</td>
<td>.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.545)</td>
<td>(.535)</td>
</tr>
<tr>
<td>Reinforcement</td>
<td>-</td>
<td>-</td>
<td>4.51</td>
<td>3.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.000)</td>
<td>(.000)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.80</td>
<td>3.03</td>
<td>-1.18</td>
<td>-.044</td>
</tr>
<tr>
<td></td>
<td>(.000)</td>
<td>(.000)</td>
<td>(.170)</td>
<td>(.636)</td>
</tr>
<tr>
<td>Deviance</td>
<td>749.8</td>
<td>650.8</td>
<td>720.4</td>
<td>650.3</td>
</tr>
<tr>
<td></td>
<td>(.000)</td>
<td>(.000)</td>
<td>(.000)</td>
<td>(.000)</td>
</tr>
<tr>
<td>Random effects</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Subjects</td>
<td>-</td>
<td>.53</td>
<td>-</td>
<td>.33</td>
</tr>
<tr>
<td>Games</td>
<td>-</td>
<td>.15</td>
<td>-</td>
<td>.14</td>
</tr>
<tr>
<td>Number of observations</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
</tbody>
</table>

Table 5: Dependent: Correspondence with equilibrium. Logistical regressions. Decisive voters. Coefficients (p-values).
update). This combined effect is also close to significantly different from zero at the 10% level, with a p-value of .106. A similar analysis of the update effect at P1=50 reveals a positive effect that is far from significantly different from zero at conventional levels.

The two last models (2a and 2b) controls for non-rational learning rules. Consider model 2b, were random effects are controlled for. Going from marginal to substantial update at P1=25, again pushes behavior towards equilibrium. The combined effect in this case is 0.26, or roughly half the effect before control for non-rational learning rules. If reinforcement is held at its mean value, while the dummies for fictitious play, update and sex are set to one, this corresponds to an increase in the probability of equilibrium voting of 7 percentage points. However, this combined effect is far from significantly different from zero at conventional levels, with a p-value of .38. The dummy for fictitious play is small in magnitude, and clearly insignificant.

The reinforcement variable, however, has a positive, large, and strongly significant effect on the probability of making equilibrium choices. Substantially, the probability of making an equilibrium choice after observing P1=25; is 45% if reinforcement is set at its mean minus two standard deviations; it is 68% if reinforcement is set at its mean (0.58); and it is 85% if reinforcement is set at its mean plus two standard deviations. In the calculation, once again the dummies for fictitious play, update and sex are set to one. The standard deviation of Reinforcement for these controls is 0.13.

The main message boils down to this: the last trace of rational updating disappears as it is controlled for the very simplistic (almost Pavlovian) learning rule in which past payoffs reinforce current choices.

12 The t-test in this case is a joint test of d(Update), d(P1=25) and the interaction between these two variables. Details about such test are found in Kam & Franzese 2007:111-30.

13 All the conclusions that we have drawn so far, would also follow if we interpreted the regressions 1a and 2a instead of 1b and 2b.

14 Comparing regressions 1b and 2b, we also see that random time effects are fairly constant (0.15 compared to 0.14), and that the main difference is captured by within subjects variation as we control for non-rational learning rules (0.52 compared to 0.33). This should come as no surprise. In regression 2b we have introduced randomly generated histories at the subject level, that give rise to random variation in the non-rational learning rules.
Long run effects of payoff reinforcement

In this section the long run behavior of payoff reinforcement learning in the game is explored. Figures 3 and 4 show simulation results for substantial and marginal updates respectively, when behavior is driven by payoff reinforcement only. The randomness and payoffs of these simulations are identical to the experiments. The same initial choice probabilities, and the same strength of attractions as in the regressions were used. An individual that plays a sequence of 1,000 independent games is simulated. The simulations are averages of 10,000 draws of such sequences. The figure maps the average fraction of decisions in equilibrium (y-axis) for the sequence of games (x-axis) and for each of the three states (red, blue and black curves). The behavioral paths have 90% confidence intervals attached (shaded red, blue and black curves).

The main insight from these simulations is that behavior moves (asymptotically) towards equilibrium (but never quite reaches it for $P_1 > 0$) in the substantial update condition (figure 3). This is very different from the marginal update condition (figure 4), in which behavior contingent on observing $P_1 = 25$ diverges (slowly) from equilibrium. The reason is quite simple: in the substantial update condition keeping the incumbent provides a (posterior) probability (after observing $P_1 = 25$) of 59% for a positive second stage payoff. In the marginal update condition keeping the incumbent provides a (posterior) probability (after observing $P_1 = 25$) of only 23% for a positive second stage payoff. So, high posterior probability of a good incumbent reinforces the choice of keeping the incumbent, and pushes behavior towards equilibrium.

Thus, observing more equilibrium behavior at $P_1 = 25$ for substantial updates does by no means imply that the mechanism (perfect bayesian equilibrium) identified in the basic electoral agency model is at work. Exactly the same conditions - clear and strong bayesian updating - will also reinforce behavior towards equilibrium in a Pavlovian manner. The confidence intervals around the behavioral path at $P_1 = 25$, indicates that the experiment has too few rounds for this effect to be pronounced. Still, as noted, the regressions weed out all trace of bayesian updating after control for reinforcement learning.
In appendix 2 we show evolving choice probabilities based on simple pay-off reinforcement for the 40 subjects in sessions 3 (marginal update) and 4 (substantial update). As can be seen the choice probabilities given production equal to 25 schillings, tend to converge more towards equilibrium in session 4 than in session 3.

Limits on sophisticated politicians

Assume voter behavior is fully described by the simple payoff reinforcement rule. Assume also that the utility of bad incumbents is linearly increasing in rents. Consider a bad type of incumbent that has drawn high productivity. If she takes maximal rents, her profit is 50 schillings right away. According to our findings, in the long run voters will not reelect incumbents that produce zero value of public production. Thus the incumbents profit is 50 schillings. Alternatively, the bad type incumbent may mimic a good type incumbent facing a low productivity draw. In this case, her first period rent is 25 schillings, while her second period expected rent is \(Q \times 50 \) schillings, where \(Q \) signifies the reelection probability in this case, and \(\delta < 1 \) is a discount factor. The bad incumbent only mimics if \(Q \geq \frac{2}{3} \). For the sake of the argument, simplify by letting \(\delta \) be arbitrarily close to unity.

Consider first the case pictured in figure 3. In this case, the mimic condition is always satisfied, and behavior approaches the equilibrium of the electoral agency model in the long run.

Consider now the case pictured in figure 4. Assume that the mimic condition is not satisfied. Given first stage production equalling 25, all second stage outcomes following reelection will be good ones. This drives up the reelection probability, \(Q \), through the payoff reinforcement rule. Eventually, \(Q \) will reach the threshold of 0.5 where bad type incumbents starts to mimic good ones. A fraction \(((1-q)(1-\pi)) \) of bad second stage outcomes will follow reelection after observing first stage production equalling 25 schillings. This lowers \(Q \) through the payoff reinforcement rule. If the mimic condition is satisfied initially, a mirror argument ensures that \(Q \) is driven towards \(\frac{1}{25} \) from above.

The upshot is that two forces limits the ability of bad incumbents to take advantage of non-rational voters. First, payoff reinforcement learning is not exposed to exploitation in the long run if low productivity is common enough, and/or bad incumbents are rare enough. Second, even if payoff reinforcement
learning can be exploited by bad incumbents, learning will take place among voters and sophisticated incumbents will adjust to this learning. The result is an evolutionary dynamics that places a cap on exploitation of non-rational voters. This constraint will be weaker the more bad incumbents value immediate rents. In the stable state, behavior deviates from the equilibrium of the electoral agency model, but not as much as with unsophisticated incumbents.

Conclusion

In his great book on capitalism and democracy, Joseph Schumpeter (1942:262) notes that: "...the typical citizen drops down to a lower level of mental performance as soon as he enters the political field. He argues and analyzes in a way which he would readily recognize as infantile within the sphere of his real interests. He becomes primitive again. His thinking is associative and affective ... [This] may prove fatal to the nation." Current models of electoral agency depart from a radically different idea; by utilizing the standard assumptions of rational and self-regarding behavior.

Our experimental design has sought to eliminate the impact of social preferences and intentions ("affectons") on voting behavior, in order to focus more clearly on non-rational ("associative") forms of learning. We found that simple payoff reinforcement learning explains subjects voting behavior well in our electoral agency experiment.\(^\text{15}\)

Our simulations indicate that situations in which bayesian updating is strong and clear, also make payoff reinforcement push behavior towards the equilibrium (which is "good for the nation" since selection and discipline tends towards optimality). When bayesian updating produces a less clear cut answer, on the other hand, payoff reinforcement pushes behavior away from equilibrium (which may be "fatal to the nation", since selection and discipline does not work optimally). This movement away from equilibrium is limited by sophisticated incumbents responding optimally to non-rational voters. The less farsighted bad incumbents are, the further from equilibrium behavior stabilizes.

For reasons such as these, we believe that observing voting patterns that approaches equilibrium behavior in field data does not justify strong conclusions about data being generated by a perfect bayesian equilibrium. Our

\(^{15}\)The explanatory force of simple payoff reinforcement has been well documented for market games, ultimatum bargaining and contribution games in Roth & Erev 1995.
results are limited to the basic electoral agency model. However, the core mechanism of this simple model is shared with more complex electoral agency models. Future development of electoral agency models might benefit from exploring the implications of associative and affective thinking more systematically.
Appendix 1

Instructions for experiments (translated from Norwegian). Text common to all treatments in plain font; {text for experiments with electorates}; <text for experiments with decisive voters>; [alternate parameters for productivity distribution].

Introduction

You are going to participate in an experiment in political decision making. In the experiment you will make decisions in a series of identical games. A game consists of two periods with an election in between. The decisions you are going to make are voting decisions.

There are two politicians in the game: the incumbent politician who is in charge in the first period, and a challenger who stands for election. If the challenger wins the election, he or she becomes the incumbent in the last period. If the challenger loses the election, the first period incumbent continues as the incumbent in the last period.

The behavior of incumbents in the game is pre-programmed in the software of the computer. This means that the incumbents you are facing are not human opponents, but machines that replicate the behavior of certain kinds of politicians.

{In the experiment you will play the game a total of 9 times. In each game you will be a member in a group of voters, called an "electorate". Each electorate consists of 3 subjects.}

<In the experiment you will play the game a total of 22 times. In each game you will make a voting decision. Your vote is decisive for the outcome of the election: If you vote against the incumbent he or she will be ousted and the challenger will assume office in the last period of the game. If you vote in favor of the incumbent he or she will stay in office in the last period of the game.>

The two first games are test games. These are intended to familiarize you with the software. You will not earn any money in these games.

{In the last 7 games you will earn money. How much you earn depends on the decisions you make, the decisions made by the other voters in your electorate, as well as random elements that will be explained shortly.}

In each of the last 7 games you will be matched with an entirely new group of voters. In other words, in the 7 games where you earn money all
electorates are unique.}

<In the last 20 games you will earn money. How much you earn depends on the decisions you make as well as random elements that will be explained shortly.>

Interaction recorded during the experiment is fully anonymous. In other words, participants will not have access to information on each other’s decisions.

{In the experiment money is denominated in an experimental currency, which we refer to as schilling. 1 schilling is worth 0.25 NOK. After the experiment is concluded, your payments will be made in NOK as you leave this room.}

<In the experiment money is denominated in an experimental currency, which we refer to as schilling. 1 schilling is worth 0.125 NOK. After the experiment is concluded, your payments will be made in NOK as you leave this room.>

Rules of the game

The first period incumbent in each game is either corrupt or honest. Honest incumbents never take rents, while corrupt incumbents take rents some times. Rents are resources diverted away from public production to private ends favoring the incumbent. In other words, if a politician takes rents, public production will be lower than what would otherwise be the case.

Whether the first period incumbent is corrupt or honest is determined by a random draw implemented in the software of the computer. A fresh draw is conducted at the beginning of each new game.

In 100 trials the randomizing device will draw 20 honest incumbents and 80 corrupt incumbents.

At no time during the experiment will you be told whether the incumbent is in fact corrupt or honest.

At the start of each new game the economy is exposed to a shock. This shock fully determines the productivity of the economy for the duration of the game (first plus last period of the game). Depending on the nature of the shock, the economy will either have low productivity or high productivity.

Compared to a high productive economy, a low productive economy requires twice the amount of revenues to reach a given level of public production.
The nature of the productivity shock is determined by a random draw implemented in the software of the computer. A fresh draw is conducted at the beginning of each new game.

In 100 trials the randomizing device will produce 55 [85] low productivity shocks and 45 [15] high productivity shocks.

At no time during the experiment will you be told whether the productivity is in fact low or high.

At the end of the first period of a game your total earnings (income net of taxes plus the worth of public production) will be displayed on your screen.

Before you cast your vote, we ask you to put down your subjective belief that the first period politician was corrupt. You do this by filling in a percentage probability (0-100). The belief you register has no consequences for the further play of the game.

After the conclusion of the experiment an additional prize of NOK 500 is awarded the participant with the on average most correct estimate of the aforementioned probability. In the case of a tie a winner will be selected randomly from among participants with the most correct estimate, all contenders accorded an equal probability of winning. Winners will be contacted by e-mail within a day or two.

After observing our total earnings at the end of the first period you will cast your vote. You must decide whether to keep the first period incumbent in the last period, or replace the first period incumbent with the challenger in the last period.

{If more than 50% of voters in your electorate votes in favor of keeping the incumbent, the incumbent will be in charge in the last period. If less than 50% of the voters in your electorate votes in favor of keeping the incumbent, the incumbent will be replaced by the challenger, who then becomes the second period incumbent.

The outcome of the election will be displayed on your screen.

If the challenger wins the election, and so becomes the second period incumbent, his/her type (honest or corrupt) is determined by a random draw executed in the software of the computer.}

<If you vote against the incumbent in the first period of the game, the type of the challenger (honest or corrupt) is determined by a random draw executed in the software of the computer.>

In 100 trials the randomizing device will draw 20 honest second period incumbents and 80 corrupt second period incumbents.
At no time during the experiment will you be told whether the second period incumbent was in fact corrupt or honest.

At the end of period two your total earnings in the second period is displayed on your screen.

{The last screen in each game displays historical statistics. These include total earnings per period and election outcomes in all games played up to and including the present game.}

<The last screen in each game displays historical statistics. These include public production and total earnings per period and your voting decisions in all games played up to and including the present game.>

Payoffs

The payoffs described below are identical for all subjects participating in the experiment.

You start out with an endowment of 100 schillings per period in each game.

The tax rate is 50 per cent, so that you are guaranteed to earn 50 schillings net of taxes per period in each game.

In addition you may earn money if the incumbent decides to allocate tax revenues to public production. A schilling of tax revenue allocated to public production is worth 1.1* schilling to you.

Incumbent behavior is programmed as follows:

- In any period, an honest incumbent facing high productivity will provide public production worth 55.0 schillings to you.

- In any period, an honest incumbent facing low productivity will provide public production worth 27.5 schillings to you.

- If productivity is low a corrupt incumbent will always extract maximal rents from your tax payments. In any period, a corrupt incumbent facing low productivity will therefore provide public production worth 0 schillings to you.

- If productivity is high a first period corrupt incumbent will extract 25.0 schillings in rents from your tax payments. The remaining tax revenue (25 schillings) will be allocated to public production. Therefore, with high productivity and a corrupt incumbent, first period public production will be worth 27.5 schillings to you.
In this way a first period corrupt incumbent facing high productivity mimics a first period honest politician facing low productivity.

A corrupt incumbent will always (independently of productivity) extract maximal rents from your tax payments in the last period. Therefore, a corrupt incumbent will provide public production worth 0 schillings to you in the last period.

A matrix of total earnings is provided below. In this matrix your earnings from public production is added to your income net of taxes (=total earnings).

<table>
<thead>
<tr>
<th></th>
<th>Honest incumbent</th>
<th>Corrupt incumbent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First stage</td>
<td>Last stage</td>
</tr>
<tr>
<td>High productivity</td>
<td>105.0</td>
<td>105.0</td>
</tr>
<tr>
<td>Low productivity</td>
<td>77.5</td>
<td>77.5</td>
</tr>
</tbody>
</table>

Table 6: Instructions: Total earnings

In addition to the matrix of total earnings you should remember that:

- In 100 trials the randomizing device draws 20 honest and 80 corrupt incumbents.
- In 100 trials the randomizing device draws 55 [85] low productivity shocks and 45 [15] high productivity shocks.

{You may ask questions during the test rounds (the two first games). During the last 7 games no questions are allowed, and all communication will take place solely through the computer network.}

<You may ask questions during the test rounds (the two first games). During the last 20 games no questions are allowed, and all communication will take place solely through the computer network.>}

Control questions

Below we ask you to answer 6 control questions. Please tag the alternative that, in your opinion, represents the correct answer.
What do you believe after having observed total earnings of:

<table>
<thead>
<tr>
<th>Earnings</th>
<th>I am certain that the incumbent is honest</th>
<th>I am certain that the incumbent is corrupt</th>
<th>I am uncertain about the type of the incumbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0 Schillings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in stage one</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.0 Schillings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in stage one</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77.5 Schillings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in stage one</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.0 Schillings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in stage two</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77.5 Schillings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in stage two</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.0 Schillings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in stage two</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Instructions: Control questions

Appendix 2

Figures A1-A20 shows evolution of individual choice probabilities based on the simple payoff reinforcement rule for session 3, while figures A21 - A40 shows evolution of individual choice probabilities based on the simple payoff reinforcement rule for session 4.

References

Figure 1: Decisive voters and electorates; games 1 – 7.
Figure 2: Decisive voters; games 1 – 5 and games 16 – 20.
Figure 3: Simulation results; substantial update (90% confidence intervals).
Figure 4: Simulation results; marginal update (90% confidence intervals).
Figures A1 – A20: Marginal update. Red line, production=00, blue line, production=25, black line, production=50.
Figures A21 – A40: Substantial update. Red line, production=00, blue line, production=25, black line, production=50.